Object Detection
Birder
PyTorch
hassonofer commited on
Commit
5217e51
·
verified ·
1 Parent(s): 9d000b6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -3
README.md CHANGED
@@ -1,3 +1,79 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - object-detection
4
+ - birder
5
+ - pytorch
6
+ library_name: birder
7
+ license: apache-2.0
8
+ ---
9
+
10
+ # Model Card for deformable_detr_boxref_coco_convnext_v2_tiny_imagenet21k
11
+
12
+ A Deformable DETR with box refinement object detection model with ConvNeXt v2 Tiny backbone (pre-trained on ImageNet-21k) and trained on COCO 2017 dataset.
13
+
14
+ ## Model Details
15
+
16
+ - **Model Type:** Object detection
17
+ - **Model Stats:**
18
+ - Params (M): 40.0
19
+ - Input image size: 640 x 640 (short side)
20
+ - **Dataset:** COCO 2017 (91 classes)
21
+
22
+ - **Papers:**
23
+ - Deformable DETR: Deformable Transformers for End-to-End Object Detection: <https://arxiv.org/abs/2010.04159>
24
+ - ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders: <https://arxiv.org/abs/2301.00808>
25
+
26
+ - **Metrics:**
27
+ - mAP @ 512x512px: 41.04
28
+ - mAP @ 640px (short side) BS=1 (w/o masking): 45.75
29
+ - mAP @ 640px (short side) BS=2 (w. masking): 45.77
30
+ - mAP @ 800px (short side) BS=1 (w/o masking): 46.68
31
+ - mAP @ 800px (short side) BS=2 (w. masking): 46.63
32
+
33
+ ## Model Usage
34
+
35
+ ### Object Detection
36
+
37
+ ```python
38
+ import birder
39
+ from birder.inference.detection import infer_image
40
+
41
+ (net, model_info) = birder.load_pretrained_model("deformable_detr_boxref_coco_convnext_v2_tiny_imagenet21k", inference=True)
42
+
43
+ # Get the image size the model was trained on
44
+ size = birder.get_size_from_signature(model_info.signature)
45
+
46
+ # Create an inference transform
47
+ transform = birder.detection_transform(size, model_info.rgb_stats, dynamic_size=model_info.signature["dynamic"])
48
+
49
+ image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
50
+ detections = infer_image(net, image, transform)
51
+ # detections is a dict with keys: 'boxes', 'labels', 'scores'
52
+ # boxes: torch.Tensor with shape (N, 4) in [x1, y1, x2, y2] format
53
+ # labels: torch.Tensor with shape (N,) containing class indices
54
+ # scores: torch.Tensor with shape (N,) containing confidence scores
55
+ ```
56
+
57
+ ## Citation
58
+
59
+ ```bibtex
60
+ @misc{zhu2021deformabledetrdeformabletransformers,
61
+ title={Deformable DETR: Deformable Transformers for End-to-End Object Detection},
62
+ author={Xizhou Zhu and Weijie Su and Lewei Lu and Bin Li and Xiaogang Wang and Jifeng Dai},
63
+ year={2021},
64
+ eprint={2010.04159},
65
+ archivePrefix={arXiv},
66
+ primaryClass={cs.CV},
67
+ url={https://arxiv.org/abs/2010.04159},
68
+ }
69
+
70
+ @misc{woo2023convnextv2codesigningscaling,
71
+ title={ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders},
72
+ author={Sanghyun Woo and Shoubhik Debnath and Ronghang Hu and Xinlei Chen and Zhuang Liu and In So Kweon and Saining Xie},
73
+ year={2023},
74
+ eprint={2301.00808},
75
+ archivePrefix={arXiv},
76
+ primaryClass={cs.CV},
77
+ url={https://arxiv.org/abs/2301.00808},
78
+ }
79
+ ```