Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,79 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- object-detection
|
4 |
+
- birder
|
5 |
+
- pytorch
|
6 |
+
library_name: birder
|
7 |
+
license: apache-2.0
|
8 |
+
---
|
9 |
+
|
10 |
+
# Model Card for deformable_detr_boxref_coco_convnext_v2_tiny_imagenet21k
|
11 |
+
|
12 |
+
A Deformable DETR with box refinement object detection model with ConvNeXt v2 Tiny backbone (pre-trained on ImageNet-21k) and trained on COCO 2017 dataset.
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
|
16 |
+
- **Model Type:** Object detection
|
17 |
+
- **Model Stats:**
|
18 |
+
- Params (M): 40.0
|
19 |
+
- Input image size: 640 x 640 (short side)
|
20 |
+
- **Dataset:** COCO 2017 (91 classes)
|
21 |
+
|
22 |
+
- **Papers:**
|
23 |
+
- Deformable DETR: Deformable Transformers for End-to-End Object Detection: <https://arxiv.org/abs/2010.04159>
|
24 |
+
- ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders: <https://arxiv.org/abs/2301.00808>
|
25 |
+
|
26 |
+
- **Metrics:**
|
27 |
+
- mAP @ 512x512px: 41.04
|
28 |
+
- mAP @ 640px (short side) BS=1 (w/o masking): 45.75
|
29 |
+
- mAP @ 640px (short side) BS=2 (w. masking): 45.77
|
30 |
+
- mAP @ 800px (short side) BS=1 (w/o masking): 46.68
|
31 |
+
- mAP @ 800px (short side) BS=2 (w. masking): 46.63
|
32 |
+
|
33 |
+
## Model Usage
|
34 |
+
|
35 |
+
### Object Detection
|
36 |
+
|
37 |
+
```python
|
38 |
+
import birder
|
39 |
+
from birder.inference.detection import infer_image
|
40 |
+
|
41 |
+
(net, model_info) = birder.load_pretrained_model("deformable_detr_boxref_coco_convnext_v2_tiny_imagenet21k", inference=True)
|
42 |
+
|
43 |
+
# Get the image size the model was trained on
|
44 |
+
size = birder.get_size_from_signature(model_info.signature)
|
45 |
+
|
46 |
+
# Create an inference transform
|
47 |
+
transform = birder.detection_transform(size, model_info.rgb_stats, dynamic_size=model_info.signature["dynamic"])
|
48 |
+
|
49 |
+
image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
|
50 |
+
detections = infer_image(net, image, transform)
|
51 |
+
# detections is a dict with keys: 'boxes', 'labels', 'scores'
|
52 |
+
# boxes: torch.Tensor with shape (N, 4) in [x1, y1, x2, y2] format
|
53 |
+
# labels: torch.Tensor with shape (N,) containing class indices
|
54 |
+
# scores: torch.Tensor with shape (N,) containing confidence scores
|
55 |
+
```
|
56 |
+
|
57 |
+
## Citation
|
58 |
+
|
59 |
+
```bibtex
|
60 |
+
@misc{zhu2021deformabledetrdeformabletransformers,
|
61 |
+
title={Deformable DETR: Deformable Transformers for End-to-End Object Detection},
|
62 |
+
author={Xizhou Zhu and Weijie Su and Lewei Lu and Bin Li and Xiaogang Wang and Jifeng Dai},
|
63 |
+
year={2021},
|
64 |
+
eprint={2010.04159},
|
65 |
+
archivePrefix={arXiv},
|
66 |
+
primaryClass={cs.CV},
|
67 |
+
url={https://arxiv.org/abs/2010.04159},
|
68 |
+
}
|
69 |
+
|
70 |
+
@misc{woo2023convnextv2codesigningscaling,
|
71 |
+
title={ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders},
|
72 |
+
author={Sanghyun Woo and Shoubhik Debnath and Ronghang Hu and Xinlei Chen and Zhuang Liu and In So Kweon and Saining Xie},
|
73 |
+
year={2023},
|
74 |
+
eprint={2301.00808},
|
75 |
+
archivePrefix={arXiv},
|
76 |
+
primaryClass={cs.CV},
|
77 |
+
url={https://arxiv.org/abs/2301.00808},
|
78 |
+
}
|
79 |
+
```
|