results
This model is a fine-tuned version of clapAI/modernBERT-base-multilingual-sentiment on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1349
- F1: 0.8234
- F1 Macro: 0.8227
- F1 Micro: 0.8239
- Precision: 0.8250
- Precision Macro: 0.8257
- Precision Micro: 0.8239
- Recall: 0.8239
- Recall Macro: 0.8218
- Recall Micro: 0.8239
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | F1 Macro | F1 Micro | Precision | Precision Macro | Precision Micro | Recall | Recall Macro | Recall Micro |
---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 160 | 0.3541 | 0.8522 | 0.8520 | 0.8521 | 0.8536 | 0.8523 | 0.8521 | 0.8521 | 0.8531 | 0.8521 |
No log | 2.0 | 320 | 0.6458 | 0.8485 | 0.8480 | 0.8486 | 0.8486 | 0.8486 | 0.8486 | 0.8486 | 0.8477 | 0.8486 |
No log | 3.0 | 480 | 1.1349 | 0.8234 | 0.8227 | 0.8239 | 0.8250 | 0.8257 | 0.8239 | 0.8239 | 0.8218 | 0.8239 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.5.0+cu124
- Datasets 2.16.1
- Tokenizers 0.21.1
- Downloads last month
- 8
Model tree for andreagasparini/ModernBERT-base-multilingual-stress
Base model
answerdotai/ModernBERT-base