results

This model is a fine-tuned version of clapAI/modernBERT-base-multilingual-sentiment on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1349
  • F1: 0.8234
  • F1 Macro: 0.8227
  • F1 Micro: 0.8239
  • Precision: 0.8250
  • Precision Macro: 0.8257
  • Precision Micro: 0.8239
  • Recall: 0.8239
  • Recall Macro: 0.8218
  • Recall Micro: 0.8239

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 F1 Macro F1 Micro Precision Precision Macro Precision Micro Recall Recall Macro Recall Micro
No log 1.0 160 0.3541 0.8522 0.8520 0.8521 0.8536 0.8523 0.8521 0.8521 0.8531 0.8521
No log 2.0 320 0.6458 0.8485 0.8480 0.8486 0.8486 0.8486 0.8486 0.8486 0.8477 0.8486
No log 3.0 480 1.1349 0.8234 0.8227 0.8239 0.8250 0.8257 0.8239 0.8239 0.8218 0.8239

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.0+cu124
  • Datasets 2.16.1
  • Tokenizers 0.21.1
Downloads last month
8
Safetensors
Model size
150M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for andreagasparini/ModernBERT-base-multilingual-stress