zephyr-7b-dpo-full-alpha_0.5_batch128
This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:
- Loss: 0.1119
- Rewards/chosen: -0.5472
- Rewards/rejected: -1.1549
- Rewards/accuracies: 0.75
- Rewards/margins: 0.6076
- Logps/rejected: -375.6880
- Logps/chosen: -336.6998
- Logits/rejected: -0.4187
- Logits/chosen: -0.8032
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.8666 | 0.2093 | 100 | 0.1307 | -0.4641 | -1.0037 | 0.7282 | 0.5395 | -360.5680 | -328.3875 | -0.7152 | -1.0291 |
2.5975 | 0.4186 | 200 | 0.1221 | -0.5115 | -1.1127 | 0.7440 | 0.6012 | -371.4751 | -333.1310 | -0.1960 | -0.5634 |
0.0974 | 0.6279 | 300 | 0.1175 | -0.5182 | -1.0980 | 0.7540 | 0.5798 | -370.0028 | -333.7931 | -0.6215 | -0.9932 |
0.0828 | 0.8373 | 400 | 0.1121 | -0.5476 | -1.1540 | 0.7480 | 0.6065 | -375.6061 | -336.7349 | -0.4274 | -0.8105 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.2.1+cu118
- Datasets 2.14.7
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for YeongminKim/zephyr-7b-dpo-full-alpha_0.5_batch128
Base model
mistralai/Mistral-7B-v0.1
Finetuned
alignment-handbook/zephyr-7b-sft-full