Llama3.1-8B-Middo-Alpaca-4o-mini
Paper: Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning
Code: https://github.com/Word2VecT/Middo
Model description
This model is a fine-tuned version of meta-llama/Llama-3.1-8B on the MiddOptimzed/llama_alpaca_4o_mini dataset.
Training and evaluation data
Training data
Middo optimized Word2Li/Alpaca-4o-mini on meta-llama/Llama-3.1-8B.
Evaluation data
- General
- Math
- Code
- Reasoning
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 1.0
Training results
- epoch: 0.9964556962025316
- total_flos: 2.1359726465573192e + 18
- train_loss: 0.9420681825982846
- train_runtime: 3147.8466
- train_samples_per_second: 20.072
- train_steps_per_second: 0.078
Framework versions
- Transformers 4.45.2
- Pytorch 2.5.1+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1