blip-vqa-base-blip

This model is a fine-tuned version of Salesforce/blip-vqa-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4584
  • Wer: 0.8802

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.853 3.88 50 0.5155 0.8983
0.2416 7.72 100 0.3933 0.8862
0.0888 11.56 150 0.4088 0.8853
0.0402 15.4 200 0.4175 0.8793
0.0238 19.24 250 0.4288 0.8759
0.015 23.08 300 0.4322 0.875
0.0096 26.96 350 0.4346 0.8836
0.006 30.8 400 0.4446 0.8741
0.0039 34.64 450 0.4484 0.8767
0.0027 38.48 500 0.4536 0.8793
0.0019 42.32 550 0.4551 0.8793
0.0016 46.16 600 0.4573 0.8810
0.0014 50.0 650 0.4584 0.8802

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
3
Safetensors
Model size
247M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for WafaaFraih/blip-vqa-base-blip

Finetuned
(15)
this model