File size: 3,410 Bytes
9bb31e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bac07a9
9bb31e7
 
 
bac07a9
9bb31e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: mit

---

# Model Card for SciLitLLM1.5

SciLitLLM1.5 adapts a general large language model for effective scientific literature understanding. Starting from the Qwen2.5-7B/14B model, SciLitLLM1.5-7B/14B goes through a hybrid strategy that integrates continual pre-training (CPT) and supervised fine-tuning (SFT), to simultaneously infuse scientific domain knowledge and enhance instruction-following capabilities for domain-specific tasks.

In this process, we identify two key challenges: (1) constructing high-quality CPT corpora, and (2) generating diverse SFT instructions. We address these challenges through a meticulous pipeline, including PDF text extraction, parsing content error correction, quality filtering, and synthetic instruction creation.

Applying this strategy, we present SciLitLLM-7B and 14B, specialized in scientific literature understanding, which demonstrates promising performance on scientific literature understanding benchmarks. 

We observe promising performance enhancements, **with an average improvement of 4.0\% on SciAssess and 10.1% on SciRIFF, compared to the leading LLMs under 10B parameters**. Notably, **SciLitLLM-7B even outperforms Llama3.1 and Qwen2.5 with 70B parameters on SciRIFF**.  Additionally, SciLitLLM-14B achieves leading results on both benchmarks, surpassing other open-source LLMs. Further ablation studies demonstrate the effectiveness of each module in our pipeline.

See the [paper](https://arxiv.org/abs/2408.15545) for more details and [github](https://github.com/dptech-corp/Uni-SMART) for data processing codes.

## Requirements

Since SciLitLLM is based on Qwen2.5, we advise you to install `transformers>=4.37.0`, or you might encounter the following error:

```
KeyError: 'qwen2'
```

## Quickstart

Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
    "Uni-SMART/SciLitLLM1.5-7B",
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Uni-SMART/SciLitLLM1.5-7B")
prompt = "Can you summarize this article for me?\n <ARTICLE>"
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```

## Citation

If you find our work helpful, feel free to give us a cite.

```
@misc{li2024scilitllmadaptllmsscientific,
      title={SciLitLLM: How to Adapt LLMs for Scientific Literature Understanding}, 
      author={Sihang Li and Jin Huang and Jiaxi Zhuang and Yaorui Shi and Xiaochen Cai and Mingjun Xu and Xiang Wang and Linfeng Zhang and Guolin Ke and Hengxing Cai},
      year={2024},
      eprint={2408.15545},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2408.15545}, 
}
```