Uni-SMART commited on
Commit
9bb31e7
·
verified ·
1 Parent(s): 660a046

First commit

Browse files
README.md CHANGED
@@ -1,3 +1,74 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+
4
+ ---
5
+
6
+ # Model Card for SciLitLLM1.5
7
+
8
+ SciLitLLM1.5 adapts a general large language model for effective scientific literature understanding. Starting from the Qwen2.5-7B/14B model, SciLitLLM1.5-7B/14B goes through a hybrid strategy that integrates continual pre-training (CPT) and supervised fine-tuning (SFT), to simultaneously infuse scientific domain knowledge and enhance instruction-following capabilities for domain-specific tasks.
9
+
10
+ In this process, we identify two key challenges: (1) constructing high-quality CPT corpora, and (2) generating diverse SFT instructions. We address these challenges through a meticulous pipeline, including PDF text extraction, parsing content error correction, quality filtering, and synthetic instruction creation.
11
+
12
+ Applying this strategy, we present SciLitLLM-7B and 14B, specialized in scientific literature understanding, which demonstrates promising performance on scientific literature understanding benchmarks.
13
+
14
+ We observe promising performance enhancements, **with an average improvement of 4.0\% on SciAssess and 10.1% on SciRIFF, compared to the leading LLMs under 10B parameters**. Notably, **SciLitLLM-7B even outperforms Llama3.1 and Qwen2.5 with 70B parameters on SciRIFF**. Additionally, SciLitLLM-14B achieves leading results on both benchmarks, surpassing other open-source LLMs. Further ablation studies demonstrate the effectiveness of each module in our pipeline.
15
+
16
+ See the [paper](https://arxiv.org/abs/2408.15545) for more details and [github](https://github.com/dptech-corp/Uni-SMART) for data processing codes.
17
+
18
+ ## Requirements
19
+
20
+ Since SciLitLLM is based on Qwen2.5, we advise you to install `transformers>=4.37.0`, or you might encounter the following error:
21
+
22
+ ```
23
+ KeyError: 'qwen2'
24
+ ```
25
+
26
+ ## Quickstart
27
+
28
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
29
+
30
+ ```python
31
+ from transformers import AutoModelForCausalLM, AutoTokenizer
32
+ device = "cuda" # the device to load the model onto
33
+ model = AutoModelForCausalLM.from_pretrained(
34
+ "Uni-SMART/SciLitLLM-1.5/7B/",
35
+ torch_dtype="auto",
36
+ device_map="auto"
37
+ )
38
+ tokenizer = AutoTokenizer.from_pretrained("Uni-SMART/SciLitLLM-1.5/7B/")
39
+ prompt = "Can you summarize this article for me?\n <ARTICLE>"
40
+ messages = [
41
+ {"role": "system", "content": "You are a helpful assistant."},
42
+ {"role": "user", "content": prompt}
43
+ ]
44
+ text = tokenizer.apply_chat_template(
45
+ messages,
46
+ tokenize=False,
47
+ add_generation_prompt=True
48
+ )
49
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
50
+ generated_ids = model.generate(
51
+ model_inputs.input_ids,
52
+ max_new_tokens=512
53
+ )
54
+ generated_ids = [
55
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
56
+ ]
57
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
58
+ ```
59
+
60
+ ## Citation
61
+
62
+ If you find our work helpful, feel free to give us a cite.
63
+
64
+ ```
65
+ @misc{li2024scilitllmadaptllmsscientific,
66
+ title={SciLitLLM: How to Adapt LLMs for Scientific Literature Understanding},
67
+ author={Sihang Li and Jin Huang and Jiaxi Zhuang and Yaorui Shi and Xiaochen Cai and Mingjun Xu and Xiang Wang and Linfeng Zhang and Guolin Ke and Hengxing Cai},
68
+ year={2024},
69
+ eprint={2408.15545},
70
+ archivePrefix={arXiv},
71
+ primaryClass={cs.LG},
72
+ url={https://arxiv.org/abs/2408.15545},
73
+ }
74
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/vepfs/fs_unifinder/SciLLM/models/Qwen/Qwen2.5-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": {
21
+ "factor": 4.0,
22
+ "original_max_position_embeddings": 32768,
23
+ "type": "yarn"
24
+ },
25
+ "rope_theta": 1000000.0,
26
+ "sliding_window": null,
27
+ "tie_word_embeddings": false,
28
+ "torch_dtype": "bfloat16",
29
+ "transformers_version": "4.43.4",
30
+ "use_cache": false,
31
+ "use_sliding_window": false,
32
+ "vocab_size": 152064
33
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.43.4"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
pytorch_model-00001-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d07aeb2516c32e8cf44a890e0f6efddd9e176d3f3bd65d5a9367d21e4bc86ef
3
+ size 4877684182
pytorch_model-00002-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01a53abd3954e835f957b7248dbee63c477ebd433318dca2c78c786ebae77297
3
+ size 4932778600
pytorch_model-00003-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1bbe7c59e2784205a05cdd6a83eb74cc75a3f422f417b4e148c08dfb93d0449
3
+ size 4330890394
pytorch_model-00004-of-00004.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cee19a5ab363f29811eacda6fd268f9012bcede636cebdd96c6be6309ad48287
3
+ size 1089996165
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15231233024
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00004-of-00004.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00004.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
13
+ "model.layers.0.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
14
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
15
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
16
+ "model.layers.0.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
17
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
18
+ "model.layers.0.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
19
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
20
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
21
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
22
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
23
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
24
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
25
+ "model.layers.1.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
26
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
27
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
28
+ "model.layers.1.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
29
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
30
+ "model.layers.1.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
31
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
32
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
33
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
34
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
35
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
36
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
37
+ "model.layers.10.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
38
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
39
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
40
+ "model.layers.10.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
41
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
42
+ "model.layers.10.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
43
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
44
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
45
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
46
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
47
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
48
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
49
+ "model.layers.11.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
50
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
51
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
52
+ "model.layers.11.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
53
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
54
+ "model.layers.11.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
55
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
56
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
57
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
58
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
59
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
60
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
61
+ "model.layers.12.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
62
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
63
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
64
+ "model.layers.12.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
65
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
66
+ "model.layers.12.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
67
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
68
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
69
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
70
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
71
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
72
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
73
+ "model.layers.13.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
74
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
75
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
76
+ "model.layers.13.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
77
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
78
+ "model.layers.13.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
79
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
80
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
81
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
82
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
83
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
84
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
85
+ "model.layers.14.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
86
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
87
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
88
+ "model.layers.14.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
89
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
90
+ "model.layers.14.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
91
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
92
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
93
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
94
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
95
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
96
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
97
+ "model.layers.15.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
98
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
99
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
100
+ "model.layers.15.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
101
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
102
+ "model.layers.15.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
103
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
104
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
105
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
106
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
107
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
108
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
109
+ "model.layers.16.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
110
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
111
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
112
+ "model.layers.16.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
113
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
114
+ "model.layers.16.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
115
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
116
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
117
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
118
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
119
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
120
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
121
+ "model.layers.17.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
122
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
123
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
124
+ "model.layers.17.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
125
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
126
+ "model.layers.17.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
127
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
128
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
129
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
130
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
131
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
132
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
133
+ "model.layers.18.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
134
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
135
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
136
+ "model.layers.18.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
137
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
138
+ "model.layers.18.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
139
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
140
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
141
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
142
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
143
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
144
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
145
+ "model.layers.19.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
146
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
147
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
148
+ "model.layers.19.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
149
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
150
+ "model.layers.19.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
151
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
152
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
153
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
154
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
155
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
156
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
157
+ "model.layers.2.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
158
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
159
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
160
+ "model.layers.2.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
161
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
162
+ "model.layers.2.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
163
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
164
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
165
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
166
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
167
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
168
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
169
+ "model.layers.20.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
170
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
171
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
172
+ "model.layers.20.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
173
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
174
+ "model.layers.20.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
175
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
176
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
177
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
178
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
179
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
180
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
181
+ "model.layers.21.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
182
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
183
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
184
+ "model.layers.21.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
185
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
186
+ "model.layers.21.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
187
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
188
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
189
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
190
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
191
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
192
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
193
+ "model.layers.22.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
194
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
195
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
196
+ "model.layers.22.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
197
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
198
+ "model.layers.22.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
199
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
200
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
201
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
202
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
203
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
204
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
205
+ "model.layers.23.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
206
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
207
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
208
+ "model.layers.23.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
209
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
210
+ "model.layers.23.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
211
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
212
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
213
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
214
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
215
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
216
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
217
+ "model.layers.24.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
218
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
219
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
220
+ "model.layers.24.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
221
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
222
+ "model.layers.24.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
223
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
224
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
225
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
226
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
227
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
228
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
229
+ "model.layers.25.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
230
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
231
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
232
+ "model.layers.25.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
233
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
234
+ "model.layers.25.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
235
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
236
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
237
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
238
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
239
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
240
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
241
+ "model.layers.26.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
242
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
243
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
244
+ "model.layers.26.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
245
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
246
+ "model.layers.26.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
247
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
248
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00004.bin",
249
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00004.bin",
250
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00004.bin",
251
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00004.bin",
252
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00004.bin",
253
+ "model.layers.27.self_attn.k_proj.bias": "pytorch_model-00003-of-00004.bin",
254
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00004.bin",
255
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00004.bin",
256
+ "model.layers.27.self_attn.q_proj.bias": "pytorch_model-00003-of-00004.bin",
257
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00004.bin",
258
+ "model.layers.27.self_attn.v_proj.bias": "pytorch_model-00003-of-00004.bin",
259
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00004.bin",
260
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
261
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
262
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
263
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
264
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
265
+ "model.layers.3.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
266
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
267
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
268
+ "model.layers.3.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
269
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
270
+ "model.layers.3.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
271
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
272
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
273
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
274
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
275
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
276
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
277
+ "model.layers.4.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
278
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
279
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
280
+ "model.layers.4.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
281
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
282
+ "model.layers.4.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
283
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
284
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
285
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
286
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
287
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
288
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
289
+ "model.layers.5.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
290
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
291
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
292
+ "model.layers.5.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
293
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
294
+ "model.layers.5.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
295
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
296
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
297
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
298
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
299
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
300
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
301
+ "model.layers.6.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
302
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
303
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
304
+ "model.layers.6.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
305
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
306
+ "model.layers.6.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
307
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
308
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00004.bin",
309
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00004.bin",
310
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00004.bin",
311
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00004.bin",
312
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00004.bin",
313
+ "model.layers.7.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
314
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
315
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
316
+ "model.layers.7.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
317
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
318
+ "model.layers.7.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
319
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
320
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
321
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
322
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
323
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
324
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
325
+ "model.layers.8.self_attn.k_proj.bias": "pytorch_model-00001-of-00004.bin",
326
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00004.bin",
327
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00004.bin",
328
+ "model.layers.8.self_attn.q_proj.bias": "pytorch_model-00001-of-00004.bin",
329
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00004.bin",
330
+ "model.layers.8.self_attn.v_proj.bias": "pytorch_model-00001-of-00004.bin",
331
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00004.bin",
332
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00004.bin",
333
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00004.bin",
334
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00002-of-00004.bin",
335
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00004.bin",
336
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00004.bin",
337
+ "model.layers.9.self_attn.k_proj.bias": "pytorch_model-00002-of-00004.bin",
338
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00004.bin",
339
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00004.bin",
340
+ "model.layers.9.self_attn.q_proj.bias": "pytorch_model-00002-of-00004.bin",
341
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00004.bin",
342
+ "model.layers.9.self_attn.v_proj.bias": "pytorch_model-00002-of-00004.bin",
343
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00004.bin",
344
+ "model.norm.weight": "pytorch_model-00003-of-00004.bin"
345
+ }
346
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{% set system_message = 'You are a helpful assistant.' %}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% endif %}{% if system_message is defined %}{{ '<|im_start|>system\n' + system_message + '<|im_end|>\n' }}{% endif %}{% for message in loop_messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|im_start|>user\n' + content + '<|im_end|>\n<|im_start|>assistant\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>' + '\n' }}{% endif %}{% endfor %}",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "padding_side": "right",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
trainer_state.json ADDED
@@ -0,0 +1,2315 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9996167113836719,
5
+ "eval_steps": 326,
6
+ "global_step": 326,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0030663089306247606,
13
+ "grad_norm": 26.20577049255371,
14
+ "learning_rate": 1.5151515151515152e-07,
15
+ "loss": 2.0736,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.006132617861249521,
20
+ "grad_norm": 24.32123565673828,
21
+ "learning_rate": 3.0303030303030305e-07,
22
+ "loss": 2.1049,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.009198926791874281,
27
+ "grad_norm": 23.082963943481445,
28
+ "learning_rate": 4.5454545454545457e-07,
29
+ "loss": 1.8755,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.012265235722499043,
34
+ "grad_norm": 26.788209915161133,
35
+ "learning_rate": 6.060606060606061e-07,
36
+ "loss": 2.1995,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.015331544653123802,
41
+ "grad_norm": 21.350114822387695,
42
+ "learning_rate": 7.575757575757576e-07,
43
+ "loss": 2.1673,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.018397853583748562,
48
+ "grad_norm": 28.563199996948242,
49
+ "learning_rate": 9.090909090909091e-07,
50
+ "loss": 2.2216,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.021464162514373324,
55
+ "grad_norm": 19.89320945739746,
56
+ "learning_rate": 1.0606060606060608e-06,
57
+ "loss": 1.8264,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.024530471444998085,
62
+ "grad_norm": 20.160602569580078,
63
+ "learning_rate": 1.2121212121212122e-06,
64
+ "loss": 2.0688,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.027596780375622843,
69
+ "grad_norm": 21.4703369140625,
70
+ "learning_rate": 1.3636363636363636e-06,
71
+ "loss": 2.0488,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.030663089306247605,
76
+ "grad_norm": 32.90473175048828,
77
+ "learning_rate": 1.5151515151515152e-06,
78
+ "loss": 2.386,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.03372939823687236,
83
+ "grad_norm": 20.769977569580078,
84
+ "learning_rate": 1.6666666666666667e-06,
85
+ "loss": 1.6769,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.036795707167497124,
90
+ "grad_norm": 22.5015811920166,
91
+ "learning_rate": 1.8181818181818183e-06,
92
+ "loss": 1.3397,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.039862016098121886,
97
+ "grad_norm": 18.01841163635254,
98
+ "learning_rate": 1.96969696969697e-06,
99
+ "loss": 1.2202,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.04292832502874665,
104
+ "grad_norm": 13.076176643371582,
105
+ "learning_rate": 2.1212121212121216e-06,
106
+ "loss": 1.0673,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.04599463395937141,
111
+ "grad_norm": 7.562614917755127,
112
+ "learning_rate": 2.2727272727272728e-06,
113
+ "loss": 1.022,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.04906094288999617,
118
+ "grad_norm": 5.768344402313232,
119
+ "learning_rate": 2.4242424242424244e-06,
120
+ "loss": 0.9034,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.052127251820620925,
125
+ "grad_norm": 8.617671012878418,
126
+ "learning_rate": 2.575757575757576e-06,
127
+ "loss": 0.8786,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.055193560751245686,
132
+ "grad_norm": 5.182284355163574,
133
+ "learning_rate": 2.7272727272727272e-06,
134
+ "loss": 0.854,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.05825986968187045,
139
+ "grad_norm": 4.750306129455566,
140
+ "learning_rate": 2.8787878787878793e-06,
141
+ "loss": 0.8039,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.06132617861249521,
146
+ "grad_norm": 2.5204381942749023,
147
+ "learning_rate": 3.0303030303030305e-06,
148
+ "loss": 0.7402,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.06439248754311996,
153
+ "grad_norm": 3.134700298309326,
154
+ "learning_rate": 3.181818181818182e-06,
155
+ "loss": 0.7149,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.06745879647374473,
160
+ "grad_norm": 2.9186689853668213,
161
+ "learning_rate": 3.3333333333333333e-06,
162
+ "loss": 0.7597,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.07052510540436949,
167
+ "grad_norm": 2.0178744792938232,
168
+ "learning_rate": 3.4848484848484854e-06,
169
+ "loss": 0.6614,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.07359141433499425,
174
+ "grad_norm": 2.2368788719177246,
175
+ "learning_rate": 3.6363636363636366e-06,
176
+ "loss": 0.749,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.07665772326561901,
181
+ "grad_norm": 1.8660510778427124,
182
+ "learning_rate": 3.7878787878787882e-06,
183
+ "loss": 0.7469,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.07972403219624377,
188
+ "grad_norm": 1.5830739736557007,
189
+ "learning_rate": 3.93939393939394e-06,
190
+ "loss": 0.7101,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.08279034112686853,
195
+ "grad_norm": 1.8778492212295532,
196
+ "learning_rate": 4.0909090909090915e-06,
197
+ "loss": 0.6604,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.0858566500574933,
202
+ "grad_norm": 2.057135820388794,
203
+ "learning_rate": 4.242424242424243e-06,
204
+ "loss": 0.721,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.08892295898811806,
209
+ "grad_norm": 1.7224825620651245,
210
+ "learning_rate": 4.393939393939394e-06,
211
+ "loss": 0.7502,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.09198926791874282,
216
+ "grad_norm": 1.4657948017120361,
217
+ "learning_rate": 4.5454545454545455e-06,
218
+ "loss": 0.7054,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.09505557684936758,
223
+ "grad_norm": 1.4230220317840576,
224
+ "learning_rate": 4.696969696969698e-06,
225
+ "loss": 0.6655,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.09812188577999234,
230
+ "grad_norm": 1.6535286903381348,
231
+ "learning_rate": 4.848484848484849e-06,
232
+ "loss": 0.7163,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.10118819471061709,
237
+ "grad_norm": 1.6131975650787354,
238
+ "learning_rate": 5e-06,
239
+ "loss": 0.6682,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.10425450364124185,
244
+ "grad_norm": 2.1076509952545166,
245
+ "learning_rate": 5.151515151515152e-06,
246
+ "loss": 0.6938,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.10732081257186661,
251
+ "grad_norm": 1.5259658098220825,
252
+ "learning_rate": 5.303030303030303e-06,
253
+ "loss": 0.6784,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.11038712150249137,
258
+ "grad_norm": 2.1185150146484375,
259
+ "learning_rate": 5.4545454545454545e-06,
260
+ "loss": 0.6916,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.11345343043311613,
265
+ "grad_norm": 1.6294972896575928,
266
+ "learning_rate": 5.606060606060606e-06,
267
+ "loss": 0.7065,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.1165197393637409,
272
+ "grad_norm": 1.500267505645752,
273
+ "learning_rate": 5.7575757575757586e-06,
274
+ "loss": 0.661,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.11958604829436566,
279
+ "grad_norm": 1.4696543216705322,
280
+ "learning_rate": 5.90909090909091e-06,
281
+ "loss": 0.6059,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.12265235722499042,
286
+ "grad_norm": 1.445040225982666,
287
+ "learning_rate": 6.060606060606061e-06,
288
+ "loss": 0.6724,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.12571866615561517,
293
+ "grad_norm": 1.3363935947418213,
294
+ "learning_rate": 6.212121212121213e-06,
295
+ "loss": 0.6636,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.12878497508623993,
300
+ "grad_norm": 1.6588456630706787,
301
+ "learning_rate": 6.363636363636364e-06,
302
+ "loss": 0.7041,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.1318512840168647,
307
+ "grad_norm": 1.551624059677124,
308
+ "learning_rate": 6.515151515151516e-06,
309
+ "loss": 0.6949,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.13491759294748945,
314
+ "grad_norm": 1.353107213973999,
315
+ "learning_rate": 6.666666666666667e-06,
316
+ "loss": 0.657,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.1379839018781142,
321
+ "grad_norm": 1.4454243183135986,
322
+ "learning_rate": 6.818181818181818e-06,
323
+ "loss": 0.636,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.14105021080873897,
328
+ "grad_norm": 1.586327314376831,
329
+ "learning_rate": 6.969696969696971e-06,
330
+ "loss": 0.7216,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.14411651973936374,
335
+ "grad_norm": 1.4303900003433228,
336
+ "learning_rate": 7.121212121212122e-06,
337
+ "loss": 0.6787,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.1471828286699885,
342
+ "grad_norm": 1.769648790359497,
343
+ "learning_rate": 7.272727272727273e-06,
344
+ "loss": 0.5773,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.15024913760061326,
349
+ "grad_norm": 2.123302459716797,
350
+ "learning_rate": 7.424242424242425e-06,
351
+ "loss": 0.6263,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.15331544653123802,
356
+ "grad_norm": 1.216840386390686,
357
+ "learning_rate": 7.5757575757575764e-06,
358
+ "loss": 0.5872,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.15638175546186278,
363
+ "grad_norm": 1.5153552293777466,
364
+ "learning_rate": 7.727272727272727e-06,
365
+ "loss": 0.594,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.15944806439248754,
370
+ "grad_norm": 1.701780915260315,
371
+ "learning_rate": 7.87878787878788e-06,
372
+ "loss": 0.5753,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.1625143733231123,
377
+ "grad_norm": 1.5358452796936035,
378
+ "learning_rate": 8.03030303030303e-06,
379
+ "loss": 0.5823,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.16558068225373707,
384
+ "grad_norm": 1.4282408952713013,
385
+ "learning_rate": 8.181818181818183e-06,
386
+ "loss": 0.5633,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.16864699118436183,
391
+ "grad_norm": 1.518804907798767,
392
+ "learning_rate": 8.333333333333334e-06,
393
+ "loss": 0.6381,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.1717133001149866,
398
+ "grad_norm": 1.427336573600769,
399
+ "learning_rate": 8.484848484848486e-06,
400
+ "loss": 0.5919,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.17477960904561135,
405
+ "grad_norm": 1.8106756210327148,
406
+ "learning_rate": 8.636363636363637e-06,
407
+ "loss": 0.617,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.1778459179762361,
412
+ "grad_norm": 1.7282638549804688,
413
+ "learning_rate": 8.787878787878788e-06,
414
+ "loss": 0.5657,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.18091222690686087,
419
+ "grad_norm": 1.22378671169281,
420
+ "learning_rate": 8.93939393939394e-06,
421
+ "loss": 0.6361,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.18397853583748563,
426
+ "grad_norm": 1.6425446271896362,
427
+ "learning_rate": 9.090909090909091e-06,
428
+ "loss": 0.5809,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.1870448447681104,
433
+ "grad_norm": 1.671093225479126,
434
+ "learning_rate": 9.242424242424244e-06,
435
+ "loss": 0.6552,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.19011115369873516,
440
+ "grad_norm": 1.3401716947555542,
441
+ "learning_rate": 9.393939393939396e-06,
442
+ "loss": 0.5941,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.19317746262935992,
447
+ "grad_norm": 1.7498574256896973,
448
+ "learning_rate": 9.545454545454547e-06,
449
+ "loss": 0.7235,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.19624377155998468,
454
+ "grad_norm": 1.510758876800537,
455
+ "learning_rate": 9.696969696969698e-06,
456
+ "loss": 0.6712,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.19931008049060944,
461
+ "grad_norm": 1.496213674545288,
462
+ "learning_rate": 9.84848484848485e-06,
463
+ "loss": 0.5502,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.20237638942123418,
468
+ "grad_norm": 1.8374212980270386,
469
+ "learning_rate": 1e-05,
470
+ "loss": 0.6098,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.20544269835185894,
475
+ "grad_norm": 1.3000707626342773,
476
+ "learning_rate": 9.999997581367439e-06,
477
+ "loss": 0.6399,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.2085090072824837,
482
+ "grad_norm": 1.5495225191116333,
483
+ "learning_rate": 9.999990325472093e-06,
484
+ "loss": 0.6518,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.21157531621310846,
489
+ "grad_norm": 1.5361844301223755,
490
+ "learning_rate": 9.999978232320984e-06,
491
+ "loss": 0.5714,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.21464162514373322,
496
+ "grad_norm": 1.9379122257232666,
497
+ "learning_rate": 9.99996130192581e-06,
498
+ "loss": 0.6144,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.21770793407435798,
503
+ "grad_norm": 1.522295355796814,
504
+ "learning_rate": 9.999939534302951e-06,
505
+ "loss": 0.6434,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.22077424300498275,
510
+ "grad_norm": 4.380992412567139,
511
+ "learning_rate": 9.999912929473465e-06,
512
+ "loss": 0.5859,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.2238405519356075,
517
+ "grad_norm": 2.6046173572540283,
518
+ "learning_rate": 9.999881487463094e-06,
519
+ "loss": 0.6552,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.22690686086623227,
524
+ "grad_norm": 1.627494215965271,
525
+ "learning_rate": 9.999845208302253e-06,
526
+ "loss": 0.5189,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.22997316979685703,
531
+ "grad_norm": 2.6718268394470215,
532
+ "learning_rate": 9.999804092026043e-06,
533
+ "loss": 0.6102,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.2330394787274818,
538
+ "grad_norm": 2.5320703983306885,
539
+ "learning_rate": 9.99975813867424e-06,
540
+ "loss": 0.6342,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.23610578765810655,
545
+ "grad_norm": 2.0609052181243896,
546
+ "learning_rate": 9.999707348291306e-06,
547
+ "loss": 0.5861,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.23917209658873131,
552
+ "grad_norm": 1.5791586637496948,
553
+ "learning_rate": 9.999651720926371e-06,
554
+ "loss": 0.6189,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.24223840551935608,
559
+ "grad_norm": 1.4853404760360718,
560
+ "learning_rate": 9.999591256633258e-06,
561
+ "loss": 0.6027,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.24530471444998084,
566
+ "grad_norm": 1.3395217657089233,
567
+ "learning_rate": 9.999525955470462e-06,
568
+ "loss": 0.6136,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.2483710233806056,
573
+ "grad_norm": 1.511687994003296,
574
+ "learning_rate": 9.999455817501155e-06,
575
+ "loss": 0.6968,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.25143733231123033,
580
+ "grad_norm": 2.3173654079437256,
581
+ "learning_rate": 9.9993808427932e-06,
582
+ "loss": 0.6092,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.2545036412418551,
587
+ "grad_norm": 1.720035433769226,
588
+ "learning_rate": 9.999301031419124e-06,
589
+ "loss": 0.5702,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.25756995017247986,
594
+ "grad_norm": 1.3266725540161133,
595
+ "learning_rate": 9.999216383456145e-06,
596
+ "loss": 0.589,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.2606362591031046,
601
+ "grad_norm": 1.4458568096160889,
602
+ "learning_rate": 9.999126898986152e-06,
603
+ "loss": 0.6213,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.2637025680337294,
608
+ "grad_norm": 1.1566760540008545,
609
+ "learning_rate": 9.999032578095722e-06,
610
+ "loss": 0.596,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.26676887696435414,
615
+ "grad_norm": 1.462127685546875,
616
+ "learning_rate": 9.998933420876103e-06,
617
+ "loss": 0.5912,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.2698351858949789,
622
+ "grad_norm": 1.3121938705444336,
623
+ "learning_rate": 9.998829427423224e-06,
624
+ "loss": 0.5855,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.27290149482560366,
629
+ "grad_norm": 1.325122594833374,
630
+ "learning_rate": 9.998720597837698e-06,
631
+ "loss": 0.664,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.2759678037562284,
636
+ "grad_norm": 1.325933575630188,
637
+ "learning_rate": 9.998606932224808e-06,
638
+ "loss": 0.6864,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.2790341126868532,
643
+ "grad_norm": 1.3255521059036255,
644
+ "learning_rate": 9.998488430694524e-06,
645
+ "loss": 0.6137,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.28210042161747795,
650
+ "grad_norm": 1.4992860555648804,
651
+ "learning_rate": 9.998365093361486e-06,
652
+ "loss": 0.592,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.2851667305481027,
657
+ "grad_norm": 1.5969640016555786,
658
+ "learning_rate": 9.998236920345021e-06,
659
+ "loss": 0.59,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.28823303947872747,
664
+ "grad_norm": 1.4171638488769531,
665
+ "learning_rate": 9.998103911769129e-06,
666
+ "loss": 0.5732,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.29129934840935223,
671
+ "grad_norm": 1.3092645406723022,
672
+ "learning_rate": 9.99796606776249e-06,
673
+ "loss": 0.5886,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.294365657339977,
678
+ "grad_norm": 1.6398749351501465,
679
+ "learning_rate": 9.997823388458462e-06,
680
+ "loss": 0.6358,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.29743196627060176,
685
+ "grad_norm": 1.389186143875122,
686
+ "learning_rate": 9.997675873995077e-06,
687
+ "loss": 0.564,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.3004982752012265,
692
+ "grad_norm": 1.499334454536438,
693
+ "learning_rate": 9.997523524515054e-06,
694
+ "loss": 0.6365,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.3035645841318513,
699
+ "grad_norm": 1.5321111679077148,
700
+ "learning_rate": 9.99736634016578e-06,
701
+ "loss": 0.6761,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.30663089306247604,
706
+ "grad_norm": 1.6426483392715454,
707
+ "learning_rate": 9.997204321099324e-06,
708
+ "loss": 0.6466,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.3096972019931008,
713
+ "grad_norm": 1.648946762084961,
714
+ "learning_rate": 9.997037467472432e-06,
715
+ "loss": 0.6073,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.31276351092372556,
720
+ "grad_norm": 1.2670505046844482,
721
+ "learning_rate": 9.996865779446527e-06,
722
+ "loss": 0.6228,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.3158298198543503,
727
+ "grad_norm": 1.4200985431671143,
728
+ "learning_rate": 9.996689257187712e-06,
729
+ "loss": 0.6542,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.3188961287849751,
734
+ "grad_norm": 1.3386104106903076,
735
+ "learning_rate": 9.99650790086676e-06,
736
+ "loss": 0.6249,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.32196243771559985,
741
+ "grad_norm": 1.723291277885437,
742
+ "learning_rate": 9.996321710659125e-06,
743
+ "loss": 0.5767,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.3250287466462246,
748
+ "grad_norm": 1.2609390020370483,
749
+ "learning_rate": 9.99613068674494e-06,
750
+ "loss": 0.5908,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.32809505557684937,
755
+ "grad_norm": 1.5247840881347656,
756
+ "learning_rate": 9.995934829309011e-06,
757
+ "loss": 0.5468,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.33116136450747413,
762
+ "grad_norm": 1.3155369758605957,
763
+ "learning_rate": 9.995734138540818e-06,
764
+ "loss": 0.5901,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.3342276734380989,
769
+ "grad_norm": 1.3768904209136963,
770
+ "learning_rate": 9.995528614634524e-06,
771
+ "loss": 0.5992,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.33729398236872365,
776
+ "grad_norm": 1.288352131843567,
777
+ "learning_rate": 9.995318257788962e-06,
778
+ "loss": 0.6146,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.3403602912993484,
783
+ "grad_norm": 1.3756117820739746,
784
+ "learning_rate": 9.995103068207638e-06,
785
+ "loss": 0.5785,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.3434266002299732,
790
+ "grad_norm": 1.3425506353378296,
791
+ "learning_rate": 9.994883046098745e-06,
792
+ "loss": 0.5782,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.34649290916059794,
797
+ "grad_norm": 1.378460168838501,
798
+ "learning_rate": 9.994658191675141e-06,
799
+ "loss": 0.5653,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.3495592180912227,
804
+ "grad_norm": 1.349794864654541,
805
+ "learning_rate": 9.994428505154362e-06,
806
+ "loss": 0.5672,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.35262552702184746,
811
+ "grad_norm": 1.2933546304702759,
812
+ "learning_rate": 9.994193986758619e-06,
813
+ "loss": 0.6698,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.3556918359524722,
818
+ "grad_norm": 1.2966620922088623,
819
+ "learning_rate": 9.993954636714796e-06,
820
+ "loss": 0.6409,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.358758144883097,
825
+ "grad_norm": 1.6862447261810303,
826
+ "learning_rate": 9.993710455254454e-06,
827
+ "loss": 0.6606,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.36182445381372175,
832
+ "grad_norm": 1.3929141759872437,
833
+ "learning_rate": 9.99346144261383e-06,
834
+ "loss": 0.599,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.3648907627443465,
839
+ "grad_norm": 1.6301984786987305,
840
+ "learning_rate": 9.993207599033827e-06,
841
+ "loss": 0.649,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.36795707167497127,
846
+ "grad_norm": 1.5956659317016602,
847
+ "learning_rate": 9.99294892476003e-06,
848
+ "loss": 0.6215,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.37102338060559603,
853
+ "grad_norm": 1.3916531801223755,
854
+ "learning_rate": 9.992685420042694e-06,
855
+ "loss": 0.6626,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.3740896895362208,
860
+ "grad_norm": 1.2992644309997559,
861
+ "learning_rate": 9.992417085136744e-06,
862
+ "loss": 0.5428,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.37715599846684555,
867
+ "grad_norm": 1.2271054983139038,
868
+ "learning_rate": 9.992143920301788e-06,
869
+ "loss": 0.608,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.3802223073974703,
874
+ "grad_norm": 1.2169947624206543,
875
+ "learning_rate": 9.991865925802096e-06,
876
+ "loss": 0.5608,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.3832886163280951,
881
+ "grad_norm": 1.423193097114563,
882
+ "learning_rate": 9.991583101906613e-06,
883
+ "loss": 0.6193,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.38635492525871984,
888
+ "grad_norm": 1.1559628248214722,
889
+ "learning_rate": 9.991295448888961e-06,
890
+ "loss": 0.5428,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.3894212341893446,
895
+ "grad_norm": 1.1540210247039795,
896
+ "learning_rate": 9.99100296702743e-06,
897
+ "loss": 0.5916,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.39248754311996936,
902
+ "grad_norm": 1.3560632467269897,
903
+ "learning_rate": 9.990705656604982e-06,
904
+ "loss": 0.5624,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.3955538520505941,
909
+ "grad_norm": 1.2158130407333374,
910
+ "learning_rate": 9.990403517909251e-06,
911
+ "loss": 0.5982,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.3986201609812189,
916
+ "grad_norm": 1.254124402999878,
917
+ "learning_rate": 9.99009655123254e-06,
918
+ "loss": 0.5335,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.4016864699118436,
923
+ "grad_norm": 2.5791096687316895,
924
+ "learning_rate": 9.98978475687183e-06,
925
+ "loss": 0.6424,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.40475277884246835,
930
+ "grad_norm": 1.6048130989074707,
931
+ "learning_rate": 9.98946813512876e-06,
932
+ "loss": 0.6515,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.4078190877730931,
937
+ "grad_norm": 1.490658164024353,
938
+ "learning_rate": 9.989146686309657e-06,
939
+ "loss": 0.5155,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.4108853967037179,
944
+ "grad_norm": 1.3266921043395996,
945
+ "learning_rate": 9.988820410725497e-06,
946
+ "loss": 0.5607,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.41395170563434264,
951
+ "grad_norm": 1.1469498872756958,
952
+ "learning_rate": 9.988489308691943e-06,
953
+ "loss": 0.6289,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.4170180145649674,
958
+ "grad_norm": 1.5313925743103027,
959
+ "learning_rate": 9.988153380529316e-06,
960
+ "loss": 0.5974,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.42008432349559216,
965
+ "grad_norm": 1.289024829864502,
966
+ "learning_rate": 9.987812626562615e-06,
967
+ "loss": 0.5788,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.4231506324262169,
972
+ "grad_norm": 1.3981531858444214,
973
+ "learning_rate": 9.987467047121502e-06,
974
+ "loss": 0.6242,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.4262169413568417,
979
+ "grad_norm": 1.3675987720489502,
980
+ "learning_rate": 9.987116642540307e-06,
981
+ "loss": 0.5827,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.42928325028746644,
986
+ "grad_norm": 1.4098269939422607,
987
+ "learning_rate": 9.986761413158032e-06,
988
+ "loss": 0.5186,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.4323495592180912,
993
+ "grad_norm": 1.328583836555481,
994
+ "learning_rate": 9.986401359318345e-06,
995
+ "loss": 0.6279,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.43541586814871597,
1000
+ "grad_norm": 1.379964828491211,
1001
+ "learning_rate": 9.986036481369579e-06,
1002
+ "loss": 0.6128,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.43848217707934073,
1007
+ "grad_norm": 1.404513955116272,
1008
+ "learning_rate": 9.98566677966474e-06,
1009
+ "loss": 0.6203,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.4415484860099655,
1014
+ "grad_norm": 1.285415768623352,
1015
+ "learning_rate": 9.985292254561492e-06,
1016
+ "loss": 0.5542,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.44461479494059025,
1021
+ "grad_norm": 1.604349136352539,
1022
+ "learning_rate": 9.984912906422176e-06,
1023
+ "loss": 0.5365,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.447681103871215,
1028
+ "grad_norm": 1.150905966758728,
1029
+ "learning_rate": 9.984528735613788e-06,
1030
+ "loss": 0.5441,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.4507474128018398,
1035
+ "grad_norm": 1.086539626121521,
1036
+ "learning_rate": 9.984139742507999e-06,
1037
+ "loss": 0.5014,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.45381372173246454,
1042
+ "grad_norm": 1.3198760747909546,
1043
+ "learning_rate": 9.98374592748114e-06,
1044
+ "loss": 0.557,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.4568800306630893,
1049
+ "grad_norm": 1.2699756622314453,
1050
+ "learning_rate": 9.98334729091421e-06,
1051
+ "loss": 0.6461,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.45994633959371406,
1056
+ "grad_norm": 1.2899307012557983,
1057
+ "learning_rate": 9.98294383319287e-06,
1058
+ "loss": 0.6349,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.4630126485243388,
1063
+ "grad_norm": 1.4127708673477173,
1064
+ "learning_rate": 9.982535554707446e-06,
1065
+ "loss": 0.7009,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.4660789574549636,
1070
+ "grad_norm": 1.1540488004684448,
1071
+ "learning_rate": 9.982122455852928e-06,
1072
+ "loss": 0.5746,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.46914526638558834,
1077
+ "grad_norm": 1.3686162233352661,
1078
+ "learning_rate": 9.98170453702897e-06,
1079
+ "loss": 0.5412,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.4722115753162131,
1084
+ "grad_norm": 1.168924331665039,
1085
+ "learning_rate": 9.981281798639892e-06,
1086
+ "loss": 0.5176,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.47527788424683787,
1091
+ "grad_norm": 1.4302713871002197,
1092
+ "learning_rate": 9.980854241094671e-06,
1093
+ "loss": 0.6231,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.47834419317746263,
1098
+ "grad_norm": 1.156389832496643,
1099
+ "learning_rate": 9.980421864806947e-06,
1100
+ "loss": 0.6283,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.4814105021080874,
1105
+ "grad_norm": 1.2555568218231201,
1106
+ "learning_rate": 9.979984670195025e-06,
1107
+ "loss": 0.5441,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.48447681103871215,
1112
+ "grad_norm": 1.1491152048110962,
1113
+ "learning_rate": 9.97954265768187e-06,
1114
+ "loss": 0.5562,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.4875431199693369,
1119
+ "grad_norm": 1.7037622928619385,
1120
+ "learning_rate": 9.979095827695113e-06,
1121
+ "loss": 0.5963,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.4906094288999617,
1126
+ "grad_norm": 1.5287169218063354,
1127
+ "learning_rate": 9.978644180667034e-06,
1128
+ "loss": 0.5817,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.49367573783058644,
1133
+ "grad_norm": 1.5015875101089478,
1134
+ "learning_rate": 9.978187717034584e-06,
1135
+ "loss": 0.589,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.4967420467612112,
1140
+ "grad_norm": 1.218470811843872,
1141
+ "learning_rate": 9.977726437239368e-06,
1142
+ "loss": 0.6042,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.49980835569183596,
1147
+ "grad_norm": 1.4837976694107056,
1148
+ "learning_rate": 9.977260341727657e-06,
1149
+ "loss": 0.5706,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.5028746646224607,
1154
+ "grad_norm": 1.1982754468917847,
1155
+ "learning_rate": 9.976789430950371e-06,
1156
+ "loss": 0.6037,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.5059409735530854,
1161
+ "grad_norm": 1.3165373802185059,
1162
+ "learning_rate": 9.976313705363099e-06,
1163
+ "loss": 0.6074,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.5090072824837102,
1168
+ "grad_norm": 1.418428659439087,
1169
+ "learning_rate": 9.975833165426079e-06,
1170
+ "loss": 0.6106,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.512073591414335,
1175
+ "grad_norm": 1.275534987449646,
1176
+ "learning_rate": 9.975347811604213e-06,
1177
+ "loss": 0.6015,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.5151399003449597,
1182
+ "grad_norm": 1.3691564798355103,
1183
+ "learning_rate": 9.974857644367056e-06,
1184
+ "loss": 0.5853,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.5182062092755845,
1189
+ "grad_norm": 1.290286898612976,
1190
+ "learning_rate": 9.974362664188825e-06,
1191
+ "loss": 0.606,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.5212725182062092,
1196
+ "grad_norm": 1.3604097366333008,
1197
+ "learning_rate": 9.973862871548389e-06,
1198
+ "loss": 0.5576,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.524338827136834,
1203
+ "grad_norm": 1.1056456565856934,
1204
+ "learning_rate": 9.973358266929272e-06,
1205
+ "loss": 0.5625,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.5274051360674588,
1210
+ "grad_norm": 1.2385663986206055,
1211
+ "learning_rate": 9.972848850819657e-06,
1212
+ "loss": 0.5222,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.5304714449980835,
1217
+ "grad_norm": 1.1576796770095825,
1218
+ "learning_rate": 9.972334623712381e-06,
1219
+ "loss": 0.5891,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.5335377539287083,
1224
+ "grad_norm": 1.6581560373306274,
1225
+ "learning_rate": 9.971815586104932e-06,
1226
+ "loss": 0.5549,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.536604062859333,
1231
+ "grad_norm": 1.699034571647644,
1232
+ "learning_rate": 9.971291738499456e-06,
1233
+ "loss": 0.5884,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.5396703717899578,
1238
+ "grad_norm": 1.884663462638855,
1239
+ "learning_rate": 9.97076308140275e-06,
1240
+ "loss": 0.5892,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.5427366807205826,
1245
+ "grad_norm": 1.313745379447937,
1246
+ "learning_rate": 9.970229615326267e-06,
1247
+ "loss": 0.5954,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.5458029896512073,
1252
+ "grad_norm": 1.38603675365448,
1253
+ "learning_rate": 9.96969134078611e-06,
1254
+ "loss": 0.6078,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.5488692985818321,
1259
+ "grad_norm": 1.3190451860427856,
1260
+ "learning_rate": 9.96914825830303e-06,
1261
+ "loss": 0.594,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.5519356075124568,
1266
+ "grad_norm": 1.2696350812911987,
1267
+ "learning_rate": 9.968600368402438e-06,
1268
+ "loss": 0.5568,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.5550019164430816,
1273
+ "grad_norm": 1.13862943649292,
1274
+ "learning_rate": 9.968047671614394e-06,
1275
+ "loss": 0.5678,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.5580682253737064,
1280
+ "grad_norm": 1.2977395057678223,
1281
+ "learning_rate": 9.967490168473601e-06,
1282
+ "loss": 0.6177,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.5611345343043311,
1287
+ "grad_norm": 1.515966534614563,
1288
+ "learning_rate": 9.966927859519419e-06,
1289
+ "loss": 0.5937,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.5642008432349559,
1294
+ "grad_norm": 1.3620631694793701,
1295
+ "learning_rate": 9.966360745295856e-06,
1296
+ "loss": 0.6077,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.5672671521655807,
1301
+ "grad_norm": 1.2670691013336182,
1302
+ "learning_rate": 9.965788826351568e-06,
1303
+ "loss": 0.5681,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.5703334610962054,
1308
+ "grad_norm": 1.2297751903533936,
1309
+ "learning_rate": 9.96521210323986e-06,
1310
+ "loss": 0.5527,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.5733997700268302,
1315
+ "grad_norm": 1.1727638244628906,
1316
+ "learning_rate": 9.964630576518684e-06,
1317
+ "loss": 0.5439,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.5764660789574549,
1322
+ "grad_norm": 1.306315541267395,
1323
+ "learning_rate": 9.96404424675064e-06,
1324
+ "loss": 0.6183,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.5795323878880797,
1329
+ "grad_norm": 1.2800726890563965,
1330
+ "learning_rate": 9.963453114502976e-06,
1331
+ "loss": 0.5831,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.5825986968187045,
1336
+ "grad_norm": 1.1831467151641846,
1337
+ "learning_rate": 9.962857180347582e-06,
1338
+ "loss": 0.521,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.5856650057493292,
1343
+ "grad_norm": 1.3062933683395386,
1344
+ "learning_rate": 9.962256444860997e-06,
1345
+ "loss": 0.5684,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.588731314679954,
1350
+ "grad_norm": 1.2360109090805054,
1351
+ "learning_rate": 9.961650908624406e-06,
1352
+ "loss": 0.5676,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.5917976236105787,
1357
+ "grad_norm": 1.310551643371582,
1358
+ "learning_rate": 9.961040572223636e-06,
1359
+ "loss": 0.5632,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.5948639325412035,
1364
+ "grad_norm": 1.20192551612854,
1365
+ "learning_rate": 9.960425436249156e-06,
1366
+ "loss": 0.5141,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.5979302414718283,
1371
+ "grad_norm": 1.1117688417434692,
1372
+ "learning_rate": 9.959805501296087e-06,
1373
+ "loss": 0.6622,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.600996550402453,
1378
+ "grad_norm": 1.124586820602417,
1379
+ "learning_rate": 9.959180767964183e-06,
1380
+ "loss": 0.5676,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.6040628593330778,
1385
+ "grad_norm": 1.136702299118042,
1386
+ "learning_rate": 9.958551236857843e-06,
1387
+ "loss": 0.5238,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.6071291682637026,
1392
+ "grad_norm": 1.1443421840667725,
1393
+ "learning_rate": 9.957916908586112e-06,
1394
+ "loss": 0.5825,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.6101954771943273,
1399
+ "grad_norm": 1.3255038261413574,
1400
+ "learning_rate": 9.957277783762672e-06,
1401
+ "loss": 0.6222,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.6132617861249521,
1406
+ "grad_norm": 1.40571928024292,
1407
+ "learning_rate": 9.956633863005845e-06,
1408
+ "loss": 0.6709,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.6163280950555768,
1413
+ "grad_norm": 1.2186510562896729,
1414
+ "learning_rate": 9.955985146938595e-06,
1415
+ "loss": 0.5416,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.6193944039862016,
1420
+ "grad_norm": 1.4977316856384277,
1421
+ "learning_rate": 9.955331636188523e-06,
1422
+ "loss": 0.5715,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.6224607129168264,
1427
+ "grad_norm": 1.1389449834823608,
1428
+ "learning_rate": 9.954673331387872e-06,
1429
+ "loss": 0.5625,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.6255270218474511,
1434
+ "grad_norm": 1.199899673461914,
1435
+ "learning_rate": 9.95401023317352e-06,
1436
+ "loss": 0.5577,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.6285933307780759,
1441
+ "grad_norm": 1.3944934606552124,
1442
+ "learning_rate": 9.953342342186984e-06,
1443
+ "loss": 0.5359,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.6316596397087006,
1448
+ "grad_norm": 1.3514692783355713,
1449
+ "learning_rate": 9.952669659074416e-06,
1450
+ "loss": 0.5419,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.6347259486393254,
1455
+ "grad_norm": 1.257280945777893,
1456
+ "learning_rate": 9.951992184486605e-06,
1457
+ "loss": 0.6755,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.6377922575699502,
1462
+ "grad_norm": 1.2243086099624634,
1463
+ "learning_rate": 9.951309919078978e-06,
1464
+ "loss": 0.6197,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.6408585665005749,
1469
+ "grad_norm": 1.4111242294311523,
1470
+ "learning_rate": 9.950622863511591e-06,
1471
+ "loss": 0.5863,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.6439248754311997,
1476
+ "grad_norm": 1.4944766759872437,
1477
+ "learning_rate": 9.949931018449144e-06,
1478
+ "loss": 0.6013,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.6469911843618245,
1483
+ "grad_norm": 1.221962332725525,
1484
+ "learning_rate": 9.949234384560958e-06,
1485
+ "loss": 0.5949,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.6500574932924492,
1490
+ "grad_norm": 1.2524234056472778,
1491
+ "learning_rate": 9.948532962520998e-06,
1492
+ "loss": 0.5804,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.653123802223074,
1497
+ "grad_norm": 1.4645860195159912,
1498
+ "learning_rate": 9.947826753007856e-06,
1499
+ "loss": 0.5906,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.6561901111536987,
1504
+ "grad_norm": 1.3019660711288452,
1505
+ "learning_rate": 9.947115756704755e-06,
1506
+ "loss": 0.58,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.6592564200843235,
1511
+ "grad_norm": 1.1700494289398193,
1512
+ "learning_rate": 9.946399974299552e-06,
1513
+ "loss": 0.4977,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.6623227290149483,
1518
+ "grad_norm": 1.2081421613693237,
1519
+ "learning_rate": 9.945679406484731e-06,
1520
+ "loss": 0.657,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.665389037945573,
1525
+ "grad_norm": 1.139465570449829,
1526
+ "learning_rate": 9.94495405395741e-06,
1527
+ "loss": 0.5609,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.6684553468761978,
1532
+ "grad_norm": 1.2909924983978271,
1533
+ "learning_rate": 9.944223917419332e-06,
1534
+ "loss": 0.5386,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.6715216558068225,
1539
+ "grad_norm": 1.2462562322616577,
1540
+ "learning_rate": 9.943488997576871e-06,
1541
+ "loss": 0.5485,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.6745879647374473,
1546
+ "grad_norm": 1.097688913345337,
1547
+ "learning_rate": 9.942749295141025e-06,
1548
+ "loss": 0.54,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.6776542736680721,
1553
+ "grad_norm": 1.1347556114196777,
1554
+ "learning_rate": 9.942004810827423e-06,
1555
+ "loss": 0.5637,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.6807205825986968,
1560
+ "grad_norm": 1.1871147155761719,
1561
+ "learning_rate": 9.941255545356321e-06,
1562
+ "loss": 0.6179,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.6837868915293216,
1567
+ "grad_norm": 1.2758738994598389,
1568
+ "learning_rate": 9.940501499452593e-06,
1569
+ "loss": 0.5582,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.6868532004599464,
1574
+ "grad_norm": 1.298793911933899,
1575
+ "learning_rate": 9.939742673845747e-06,
1576
+ "loss": 0.5128,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.6899195093905711,
1581
+ "grad_norm": 1.9454792737960815,
1582
+ "learning_rate": 9.938979069269909e-06,
1583
+ "loss": 0.5316,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.6929858183211959,
1588
+ "grad_norm": 1.4250558614730835,
1589
+ "learning_rate": 9.938210686463834e-06,
1590
+ "loss": 0.5998,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.6960521272518206,
1595
+ "grad_norm": 1.9154913425445557,
1596
+ "learning_rate": 9.93743752617089e-06,
1597
+ "loss": 0.5922,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.6991184361824454,
1602
+ "grad_norm": 1.552946925163269,
1603
+ "learning_rate": 9.936659589139078e-06,
1604
+ "loss": 0.61,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.7021847451130702,
1609
+ "grad_norm": 1.3364359140396118,
1610
+ "learning_rate": 9.935876876121016e-06,
1611
+ "loss": 0.6085,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.7052510540436949,
1616
+ "grad_norm": 1.5024923086166382,
1617
+ "learning_rate": 9.935089387873938e-06,
1618
+ "loss": 0.5599,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.7083173629743197,
1623
+ "grad_norm": 1.3065555095672607,
1624
+ "learning_rate": 9.934297125159707e-06,
1625
+ "loss": 0.6381,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.7113836719049444,
1630
+ "grad_norm": 1.158210039138794,
1631
+ "learning_rate": 9.933500088744795e-06,
1632
+ "loss": 0.6796,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.7144499808355692,
1637
+ "grad_norm": 1.2026755809783936,
1638
+ "learning_rate": 9.932698279400301e-06,
1639
+ "loss": 0.5747,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.717516289766194,
1644
+ "grad_norm": 1.2283495664596558,
1645
+ "learning_rate": 9.931891697901937e-06,
1646
+ "loss": 0.5401,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.7205825986968187,
1651
+ "grad_norm": 1.4405039548873901,
1652
+ "learning_rate": 9.93108034503003e-06,
1653
+ "loss": 0.5837,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.7236489076274435,
1658
+ "grad_norm": 1.0767070055007935,
1659
+ "learning_rate": 9.93026422156953e-06,
1660
+ "loss": 0.5265,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.7267152165580683,
1665
+ "grad_norm": 1.2622807025909424,
1666
+ "learning_rate": 9.929443328309995e-06,
1667
+ "loss": 0.5767,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.729781525488693,
1672
+ "grad_norm": 1.8162665367126465,
1673
+ "learning_rate": 9.928617666045603e-06,
1674
+ "loss": 0.6198,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.7328478344193178,
1679
+ "grad_norm": 1.1307610273361206,
1680
+ "learning_rate": 9.927787235575141e-06,
1681
+ "loss": 0.5548,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.7359141433499425,
1686
+ "grad_norm": 1.3943837881088257,
1687
+ "learning_rate": 9.926952037702013e-06,
1688
+ "loss": 0.6017,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.7389804522805673,
1693
+ "grad_norm": 1.1399344205856323,
1694
+ "learning_rate": 9.926112073234236e-06,
1695
+ "loss": 0.5848,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.7420467612111921,
1700
+ "grad_norm": 1.063624620437622,
1701
+ "learning_rate": 9.925267342984431e-06,
1702
+ "loss": 0.5012,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.7451130701418168,
1707
+ "grad_norm": 1.1229875087738037,
1708
+ "learning_rate": 9.924417847769836e-06,
1709
+ "loss": 0.5875,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.7481793790724416,
1714
+ "grad_norm": 1.106398105621338,
1715
+ "learning_rate": 9.923563588412302e-06,
1716
+ "loss": 0.5628,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.7512456880030663,
1721
+ "grad_norm": 1.257165551185608,
1722
+ "learning_rate": 9.922704565738281e-06,
1723
+ "loss": 0.5492,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.7543119969336911,
1728
+ "grad_norm": 1.7508597373962402,
1729
+ "learning_rate": 9.921840780578838e-06,
1730
+ "loss": 0.5559,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.7573783058643159,
1735
+ "grad_norm": 1.2271780967712402,
1736
+ "learning_rate": 9.920972233769644e-06,
1737
+ "loss": 0.5749,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.7604446147949406,
1742
+ "grad_norm": 1.26109778881073,
1743
+ "learning_rate": 9.92009892615098e-06,
1744
+ "loss": 0.6323,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.7635109237255654,
1749
+ "grad_norm": 1.2538588047027588,
1750
+ "learning_rate": 9.919220858567725e-06,
1751
+ "loss": 0.5657,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.7665772326561902,
1756
+ "grad_norm": 1.2283259630203247,
1757
+ "learning_rate": 9.918338031869373e-06,
1758
+ "loss": 0.5895,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.7696435415868149,
1763
+ "grad_norm": 1.3043975830078125,
1764
+ "learning_rate": 9.917450446910014e-06,
1765
+ "loss": 0.6051,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.7727098505174397,
1770
+ "grad_norm": 1.1411467790603638,
1771
+ "learning_rate": 9.916558104548346e-06,
1772
+ "loss": 0.5874,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.7757761594480644,
1777
+ "grad_norm": 1.595882773399353,
1778
+ "learning_rate": 9.91566100564767e-06,
1779
+ "loss": 0.5436,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.7788424683786892,
1784
+ "grad_norm": 1.166404366493225,
1785
+ "learning_rate": 9.914759151075885e-06,
1786
+ "loss": 0.5632,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.781908777309314,
1791
+ "grad_norm": 1.1772657632827759,
1792
+ "learning_rate": 9.913852541705493e-06,
1793
+ "loss": 0.6405,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.7849750862399387,
1798
+ "grad_norm": 1.1861871480941772,
1799
+ "learning_rate": 9.912941178413597e-06,
1800
+ "loss": 0.6008,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.7880413951705635,
1805
+ "grad_norm": 1.3676292896270752,
1806
+ "learning_rate": 9.912025062081899e-06,
1807
+ "loss": 0.5217,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.7911077041011882,
1812
+ "grad_norm": 1.1941781044006348,
1813
+ "learning_rate": 9.911104193596695e-06,
1814
+ "loss": 0.5233,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.794174013031813,
1819
+ "grad_norm": 1.3091732263565063,
1820
+ "learning_rate": 9.910178573848883e-06,
1821
+ "loss": 0.6155,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.7972403219624378,
1826
+ "grad_norm": 1.139570951461792,
1827
+ "learning_rate": 9.909248203733961e-06,
1828
+ "loss": 0.5365,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.8003066308930624,
1833
+ "grad_norm": 1.2685056924819946,
1834
+ "learning_rate": 9.908313084152012e-06,
1835
+ "loss": 0.6398,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.8033729398236872,
1840
+ "grad_norm": 1.1302436590194702,
1841
+ "learning_rate": 9.907373216007727e-06,
1842
+ "loss": 0.5849,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.8064392487543119,
1847
+ "grad_norm": 1.07113778591156,
1848
+ "learning_rate": 9.906428600210378e-06,
1849
+ "loss": 0.6114,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.8095055576849367,
1854
+ "grad_norm": 1.2171744108200073,
1855
+ "learning_rate": 9.905479237673841e-06,
1856
+ "loss": 0.6419,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.8125718666155615,
1861
+ "grad_norm": 1.642828345298767,
1862
+ "learning_rate": 9.904525129316576e-06,
1863
+ "loss": 0.5992,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.8156381755461862,
1868
+ "grad_norm": 1.9515584707260132,
1869
+ "learning_rate": 9.90356627606164e-06,
1870
+ "loss": 0.5474,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.818704484476811,
1875
+ "grad_norm": 1.2620511054992676,
1876
+ "learning_rate": 9.90260267883668e-06,
1877
+ "loss": 0.625,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.8217707934074358,
1882
+ "grad_norm": 1.3877058029174805,
1883
+ "learning_rate": 9.901634338573926e-06,
1884
+ "loss": 0.6071,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.8248371023380605,
1889
+ "grad_norm": 1.811902403831482,
1890
+ "learning_rate": 9.900661256210207e-06,
1891
+ "loss": 0.5573,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.8279034112686853,
1896
+ "grad_norm": 1.1542803049087524,
1897
+ "learning_rate": 9.899683432686933e-06,
1898
+ "loss": 0.592,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.83096972019931,
1903
+ "grad_norm": 1.1733490228652954,
1904
+ "learning_rate": 9.898700868950102e-06,
1905
+ "loss": 0.5948,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.8340360291299348,
1910
+ "grad_norm": 1.0578864812850952,
1911
+ "learning_rate": 9.897713565950297e-06,
1912
+ "loss": 0.483,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.8371023380605596,
1917
+ "grad_norm": 1.1385244131088257,
1918
+ "learning_rate": 9.896721524642689e-06,
1919
+ "loss": 0.5959,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.8401686469911843,
1924
+ "grad_norm": 1.5948585271835327,
1925
+ "learning_rate": 9.895724745987029e-06,
1926
+ "loss": 0.6105,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.8432349559218091,
1931
+ "grad_norm": 1.1426746845245361,
1932
+ "learning_rate": 9.894723230947658e-06,
1933
+ "loss": 0.5761,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.8463012648524338,
1938
+ "grad_norm": 1.1893310546875,
1939
+ "learning_rate": 9.893716980493492e-06,
1940
+ "loss": 0.6312,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.8493675737830586,
1945
+ "grad_norm": 1.2711292505264282,
1946
+ "learning_rate": 9.892705995598028e-06,
1947
+ "loss": 0.5475,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.8524338827136834,
1952
+ "grad_norm": 1.291114330291748,
1953
+ "learning_rate": 9.891690277239352e-06,
1954
+ "loss": 0.5956,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.8555001916443081,
1959
+ "grad_norm": 1.2355763912200928,
1960
+ "learning_rate": 9.890669826400121e-06,
1961
+ "loss": 0.5848,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.8585665005749329,
1966
+ "grad_norm": 1.1467026472091675,
1967
+ "learning_rate": 9.889644644067573e-06,
1968
+ "loss": 0.5739,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.8616328095055577,
1973
+ "grad_norm": 1.2425200939178467,
1974
+ "learning_rate": 9.888614731233523e-06,
1975
+ "loss": 0.5706,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.8646991184361824,
1980
+ "grad_norm": 1.3056875467300415,
1981
+ "learning_rate": 9.887580088894367e-06,
1982
+ "loss": 0.5517,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.8677654273668072,
1987
+ "grad_norm": 1.1555942296981812,
1988
+ "learning_rate": 9.88654071805107e-06,
1989
+ "loss": 0.5779,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.8708317362974319,
1994
+ "grad_norm": 1.172336220741272,
1995
+ "learning_rate": 9.885496619709173e-06,
1996
+ "loss": 0.6184,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.8738980452280567,
2001
+ "grad_norm": 1.2276782989501953,
2002
+ "learning_rate": 9.884447794878796e-06,
2003
+ "loss": 0.6544,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.8769643541586815,
2008
+ "grad_norm": 1.0777740478515625,
2009
+ "learning_rate": 9.883394244574624e-06,
2010
+ "loss": 0.5711,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.8800306630893062,
2015
+ "grad_norm": 1.2766623497009277,
2016
+ "learning_rate": 9.882335969815919e-06,
2017
+ "loss": 0.5839,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.883096972019931,
2022
+ "grad_norm": 1.161967396736145,
2023
+ "learning_rate": 9.881272971626515e-06,
2024
+ "loss": 0.5959,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.8861632809505557,
2029
+ "grad_norm": 1.1648389101028442,
2030
+ "learning_rate": 9.880205251034807e-06,
2031
+ "loss": 0.5606,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.8892295898811805,
2036
+ "grad_norm": 1.2798397541046143,
2037
+ "learning_rate": 9.87913280907377e-06,
2038
+ "loss": 0.6505,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.8922958988118053,
2043
+ "grad_norm": 1.1248582601547241,
2044
+ "learning_rate": 9.878055646780938e-06,
2045
+ "loss": 0.5577,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.89536220774243,
2050
+ "grad_norm": 1.2309131622314453,
2051
+ "learning_rate": 9.876973765198414e-06,
2052
+ "loss": 0.6142,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.8984285166730548,
2057
+ "grad_norm": 1.280797004699707,
2058
+ "learning_rate": 9.87588716537287e-06,
2059
+ "loss": 0.6134,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.9014948256036796,
2064
+ "grad_norm": 1.0746029615402222,
2065
+ "learning_rate": 9.87479584835554e-06,
2066
+ "loss": 0.4581,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.9045611345343043,
2071
+ "grad_norm": 1.1132365465164185,
2072
+ "learning_rate": 9.873699815202222e-06,
2073
+ "loss": 0.5337,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.9076274434649291,
2078
+ "grad_norm": 1.0475718975067139,
2079
+ "learning_rate": 9.872599066973276e-06,
2080
+ "loss": 0.5762,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.9106937523955538,
2085
+ "grad_norm": 1.2082624435424805,
2086
+ "learning_rate": 9.871493604733626e-06,
2087
+ "loss": 0.5445,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.9137600613261786,
2092
+ "grad_norm": 1.1644026041030884,
2093
+ "learning_rate": 9.87038342955275e-06,
2094
+ "loss": 0.5242,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.9168263702568034,
2099
+ "grad_norm": 1.1655209064483643,
2100
+ "learning_rate": 9.869268542504695e-06,
2101
+ "loss": 0.5568,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.9198926791874281,
2106
+ "grad_norm": 1.3931217193603516,
2107
+ "learning_rate": 9.868148944668061e-06,
2108
+ "loss": 0.6037,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.9229589881180529,
2113
+ "grad_norm": 1.0738801956176758,
2114
+ "learning_rate": 9.867024637126006e-06,
2115
+ "loss": 0.5807,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.9260252970486776,
2120
+ "grad_norm": 1.2301298379898071,
2121
+ "learning_rate": 9.865895620966241e-06,
2122
+ "loss": 0.5418,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.9290916059793024,
2127
+ "grad_norm": 1.1297430992126465,
2128
+ "learning_rate": 9.864761897281043e-06,
2129
+ "loss": 0.5892,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.9321579149099272,
2134
+ "grad_norm": 1.1680104732513428,
2135
+ "learning_rate": 9.863623467167232e-06,
2136
+ "loss": 0.6066,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.9352242238405519,
2141
+ "grad_norm": 1.284200668334961,
2142
+ "learning_rate": 9.862480331726186e-06,
2143
+ "loss": 0.615,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.9382905327711767,
2148
+ "grad_norm": 1.1131356954574585,
2149
+ "learning_rate": 9.861332492063835e-06,
2150
+ "loss": 0.6144,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.9413568417018015,
2155
+ "grad_norm": 1.2503700256347656,
2156
+ "learning_rate": 9.860179949290661e-06,
2157
+ "loss": 0.5335,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.9444231506324262,
2162
+ "grad_norm": 1.1401102542877197,
2163
+ "learning_rate": 9.859022704521695e-06,
2164
+ "loss": 0.6011,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.947489459563051,
2169
+ "grad_norm": 1.0754965543746948,
2170
+ "learning_rate": 9.857860758876516e-06,
2171
+ "loss": 0.497,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.9505557684936757,
2176
+ "grad_norm": 1.179566502571106,
2177
+ "learning_rate": 9.85669411347925e-06,
2178
+ "loss": 0.5605,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.9536220774243005,
2183
+ "grad_norm": 1.3431735038757324,
2184
+ "learning_rate": 9.855522769458576e-06,
2185
+ "loss": 0.5284,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.9566883863549253,
2190
+ "grad_norm": 1.2126455307006836,
2191
+ "learning_rate": 9.854346727947712e-06,
2192
+ "loss": 0.6169,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 0.95975469528555,
2197
+ "grad_norm": 1.1429709196090698,
2198
+ "learning_rate": 9.853165990084422e-06,
2199
+ "loss": 0.6198,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 0.9628210042161748,
2204
+ "grad_norm": 1.3174223899841309,
2205
+ "learning_rate": 9.851980557011016e-06,
2206
+ "loss": 0.5923,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 0.9658873131467995,
2211
+ "grad_norm": 1.2224098443984985,
2212
+ "learning_rate": 9.850790429874344e-06,
2213
+ "loss": 0.6292,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 0.9689536220774243,
2218
+ "grad_norm": 1.163927674293518,
2219
+ "learning_rate": 9.849595609825798e-06,
2220
+ "loss": 0.6248,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 0.9720199310080491,
2225
+ "grad_norm": 1.374999761581421,
2226
+ "learning_rate": 9.848396098021312e-06,
2227
+ "loss": 0.5672,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 0.9750862399386738,
2232
+ "grad_norm": 1.2106223106384277,
2233
+ "learning_rate": 9.847191895621354e-06,
2234
+ "loss": 0.5657,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 0.9781525488692986,
2239
+ "grad_norm": 1.2192652225494385,
2240
+ "learning_rate": 9.845983003790935e-06,
2241
+ "loss": 0.6212,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 0.9812188577999233,
2246
+ "grad_norm": 1.2548232078552246,
2247
+ "learning_rate": 9.844769423699603e-06,
2248
+ "loss": 0.5447,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 0.9842851667305481,
2253
+ "grad_norm": 1.1989444494247437,
2254
+ "learning_rate": 9.843551156521437e-06,
2255
+ "loss": 0.6398,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 0.9873514756611729,
2260
+ "grad_norm": 1.3096071481704712,
2261
+ "learning_rate": 9.842328203435054e-06,
2262
+ "loss": 0.5516,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 0.9904177845917976,
2267
+ "grad_norm": 1.4656528234481812,
2268
+ "learning_rate": 9.841100565623604e-06,
2269
+ "loss": 0.5672,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 0.9934840935224224,
2274
+ "grad_norm": 1.2001426219940186,
2275
+ "learning_rate": 9.839868244274769e-06,
2276
+ "loss": 0.5759,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 0.9965504024530472,
2281
+ "grad_norm": 1.2918856143951416,
2282
+ "learning_rate": 9.838631240580761e-06,
2283
+ "loss": 0.6332,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 0.9996167113836719,
2288
+ "grad_norm": 1.255189299583435,
2289
+ "learning_rate": 9.837389555738325e-06,
2290
+ "loss": 0.6304,
2291
+ "step": 326
2292
+ }
2293
+ ],
2294
+ "logging_steps": 1.0,
2295
+ "max_steps": 3260,
2296
+ "num_input_tokens_seen": 0,
2297
+ "num_train_epochs": 10,
2298
+ "save_steps": 163,
2299
+ "stateful_callbacks": {
2300
+ "TrainerControl": {
2301
+ "args": {
2302
+ "should_epoch_stop": false,
2303
+ "should_evaluate": false,
2304
+ "should_log": false,
2305
+ "should_save": true,
2306
+ "should_training_stop": false
2307
+ },
2308
+ "attributes": {}
2309
+ }
2310
+ },
2311
+ "total_flos": 8.002154556467184e+18,
2312
+ "train_batch_size": 2,
2313
+ "trial_name": null,
2314
+ "trial_params": null
2315
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c46372ec89f40bb5dfc3c06f0bf400eac5662f4c1d0bdeb06fc016860a1596c0
3
+ size 6776
vocab.json ADDED
The diff for this file is too large to render. See raw diff