Quantization made by Richard Erkhov.

Github

Discord

Request more models

Paper: Beyond Bradley-Terry Models: A General Preference Model for Language Model Alignment Code: https://github.com/general-preference/general-preference-model

SPPO-Llama-3-8B-Instruct-GPM-2B - bnb 8bits

Original model description:

language: - en license: apache-2.0 datasets: - openbmb/UltraFeedback pipeline_tag: text-generation model-index: - name: SPPO-Llama-3-8B-Instruct-GPM-2B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 60.24 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=general-preference/SPPO-Llama-3-8B-Instruct-GPM-2B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 27.89 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=general-preference/SPPO-Llama-3-8B-Instruct-GPM-2B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 8.01 name: exact match source: url: https://huggingface.co/spaces/open-llm_leaderboard/open_llm_leaderboard?query=general-preference/SPPO-Llama-3-8B-Instruct-GPM-2B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 1.23 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=general-preference/SPPO-Llama-3-8B-Instruct-GPM-2B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 3.19 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=general-preference/SPPO-Llama-3-8B-Instruct-GPM-2B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 29.53 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=general-preference/SPPO-Llama-3-8B-Instruct-GPM-2B name: Open LLM Leaderboard

General Preference Modeling with Preference Representations for Aligning Language Models (https://arxiv.org/abs/2410.02197)

SPPO-Llama-3-8B-Instruct-GPM-2B

This model was developed using SPPO at iteration 3 and the General Preference representation Model (GPM) (specifically, using GPM-Gemma-2B), based on the meta-llama/Meta-Llama-3-8B-Instruct architecture as starting point. We utilized the prompt sets from the openbmb/UltraFeedback dataset, splited to 3 parts for 3 iterations by snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset. All responses used are synthetic.

Links to Other Models

Model Description

  • Model type: A 8B parameter GPT-like model fine-tuned on synthetic datasets.
  • Language(s) (NLP): Primarily English
  • License: Apache-2.0
  • Finetuned from model: meta-llama/Meta-Llama-3-8B-Instruct

AlpacaEval Leaderboard Evaluation Results

Model LC. Win Rate Win Rate Avg. Length
SPPO-Llama-3-8B-Instruct-GPM-2B 35.30 45.44 2490

Open LLM Leaderboard Evaluation Results

Results are reported by using lm-evaluation-harness v0.4.1

arc_challenge truthfulqa_mc2 winogrande gsm8k hellaswag mmlu average
SPPO-Llama-3-8B-Instruct-GPM-2B 62.03 52.95 76.56 75.36 78.57 65.66 68.52

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • eta: 1000
  • per_device_train_batch_size: 8
  • gradient_accumulation_steps: 1
  • seed: 42
  • distributed_type: deepspeed_zero3
  • num_devices: 8
  • optimizer: RMSProp
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_train_epochs: 6.0 (stop at epoch=1.0)

Citation

@article{zhang2024general,
  title={General Preference Modeling with Preference Representations for Aligning Language Models},
  author={Zhang, Yifan and Zhang, Ge and Wu, Yue and Xu, Kangping and Gu, Quanquan},
  journal={arXiv preprint arXiv:2410.02197},
  year={2024}
}
Downloads last month
5
Safetensors
Model size
8.03B params
Tensor type
F32
F16
I8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support