HillFir's picture
Upload folder using huggingface_hub
4bd3201 verified
---
license: mit
tags:
- RLinf
language:
- en
metrics:
- accuracy
base_model:
- gen-robot/openvla-7b-rlvla-warmup
pipeline_tag: reinforcement-learning
model-index:
- name: RLinf-openvla-maniskill3-ppo
results:
- task:
type: VLA
dataset:
type: maniskill-vision
name: maniskill-vision
metrics:
- type: accuracy
value: 82.0
- task:
type: VLA
dataset:
type: maniskill-semantic
name: maniskill-semantic
metrics:
- type: accuracy
value: 80.6
- task:
type: VLA
dataset:
type: maniskill-position
name: maniskill-position
metrics:
- type: accuracy
value: 89.3
---
<div align="center">
<img src="logo.svg" alt="RLinf-logo" width="500"/>
</div>
<div align="center">
<!-- <a href="TODO"><img src="https://img.shields.io/badge/arXiv-Paper-red?logo=arxiv"></a> -->
<!-- <a href="TODO"><img src="https://img.shields.io/badge/HuggingFace-yellow?logo=huggingface&logoColor=white" alt="Hugging Face"></a> -->
<a href="https://github.com/RLinf/RLinf"><img src="https://img.shields.io/badge/Github-blue"></a>
<a href="https://rlinf.readthedocs.io/en/latest/"><img src="https://img.shields.io/badge/Documentation-Purple?color=8A2BE2&logo=readthedocs"></a>
<!-- <a href="TODO"><img src="https://devin.ai/assets/deepwiki-badge.png" alt="Ask DeepWiki.com" style="height:20px;"></a>
<a href="TODO"><img src="https://img.shields.io/badge/微信-green?logo=wechat&amp"></a> -->
</div>
<h1 align="center">RLinf: Reinforcement Learning Infrastructure for Agentic AI</h1>
[RLinf](https://github.com/RLinf/RLinf) is a flexible and scalable open-source infrastructure designed for post-training foundation models (LLMs, VLMs, VLAs) via reinforcement learning. The 'inf' in RLinf stands for Infrastructure, highlighting its role as a robust backbone for next-generation training. It also stands for Infinite, symbolizing the system’s support for open-ended learning, continuous generalization, and limitless possibilities in intelligence development.
<div align="center">
<img src="overview.png" alt="RLinf-overview" width="600"/>
</div>
## Model Description
This model is trained on ``gen-robot/openvla-7b-rlvla-warmup`` by Proximal Policy Optimization (PPO) on the ManiSkill simulator.
## Full OOD Evaluation and Results
### Overall OOD Eval Results
Note: rl4vla refers to the paper VLA-RL-Study: What Can RL Bring to VLA Generalization? An Empirical Study.
| Description | rl4vla | GRPO-openvlaoft | PPO-openvlaoft | __PPO-openvla__ | GRPO-openvla |
|---------------|-----------|-----------------|----------------|-------------|---------------|
| Avg results | 0.7608 | 0.61484375 | 0.6453125 | **0.822135417** | 0.7546875 |
### OOD Eval on Vision
| Description | rl4vla | GRPO-openvlaoft | PPO-openvlaoft | __PPO-openvla__ | GRPO-openvla |
|---------------|-----------|-----------------|----------------|-------------|---------------|
| vision avg | 0.7656 | 0.846875 | 0.80546875 | **0.8203125** | 0.746875 |
| unseen table | 0.844 | 0.9140625 | 0.9453125 | **0.95703125** | 0.8984375 |
| dynamic texture (weak) | 0.833 | **0.91015625** | 0.82421875 | 0.85546875 | 0.7890625 |
| dynamic texture (strong) | 0.63 | **0.7734375** | 0.625 | 0.72265625 | 0.65625 |
| dynamic noise (weak) | 0.854 | 0.89453125 | **0.8984375** | 0.87109375 | 0.796875|
| dynamic noise (strong) | 0.667 | **0.7421875** | 0.734375 | 0.6953125 | 0.59375|
### OOD Eval on Semantic
| Description | rl4vla | GRPO-openvlaoft | PPO-openvlaoft | __PPO-openvla__ | GRPO-openvla |
|---------------|-----------|-----------------|----------------|-------------|---------------|
| object avg | 0.754 | 0.516113281 | 0.56640625 | **0.805664063** | 0.744140625|
| train setting | 0.938 | 0.94140625 | 0.91796875 | **0.9609375** | 0.84375|
| unseen objects | 0.714 | 0.8046875 | 0.77734375 | **0.81640625** | 0.765625|
| unseen receptacles | 0.75 | 0.7421875 | 0.78125 | **0.8125** | 0.734375|
| unseen instructions | 0.891 | 0.6796875 | 0.68359375 | **0.9453125** | 0.890625|
| multi-object (both seen) | 0.75 | 0.3515625 | 0.4296875 | **0.84375** | 0.7578125|
| multi-object (both unseen) | 0.578 | 0.3046875 | 0.38671875 | **0.62890625** | 0.578125|
| distractive receptacle | 0.812 | 0.1875 | 0.31640625 | **0.828125** | 0.78125|
| multi-receptacle (both unseen) | 0.599 | 0.1171875 | 0.23828125 | **0.609375** | 0.6015625|
### OOD Eval on Position
| Description | rl4vla | GRPO-openvlaoft | PPO-openvlaoft | __PPO-openvla__ | GRPO-openvla |
|---------------|-----------|-----------------|----------------|-------------|---------------|
| position avg | 0.776 | 0.4296875 | 0.560546875 | **0.892578125** | 0.81640625|
| unseen position (object & receptacle) | 0.807 | 0.40234375 | 0.50390625 | **0.86328125** | 0.75|
| mid-episode object reposition | 0.745 | 0.45703125 | 0.6171875 | **0.921875** | 0.8828125|
## How to Use
Please integrate the provided model with the [RLinf](https://github.com/RLinf/RLinf) codebase. To do so, modify the following parameters in the configuration file ``examples/embodiment/config/maniskill_ppo_openvla.yaml``:
- Set ``actor.checkpoint_load_path``, ``actor.tokenizer.tokenizer_model``, and ``rollout.model_dir`` to the path of the model checkpoint.
Note: If you intend to evaluate the model directly, make sure to set ``actor.model.is_lora`` to ``false``.
## License
This code repository and the model weights are licensed under the MIT License.