A recent paper titled "ShortGPT: Layers in Large Language Models are More Redundant Than You Expect" proposes a simple and effective approach to pruning Large Language Models (LLMs) by removing redundant layers.
Key points: * Discovers significant redundancy across layers in LLMs, with some layers playing a negligible role for the final performance. * Defines a new metric called Block Influence (BI) to quantify the importance of each layer in an LLM. * Removes layers with low BI scores, achieving up to 25% reduction in parameters and computation while maintaining 92% of the LLM's performance.