INFERENCE
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("Mr-Vicky-01/qwen-conversational-finetuned")
model = AutoModelForCausalLM.from_pretrained("Mr-Vicky-01/qwen-conversational-finetuned")
prompt = """
<|im_start|>system\nYou are a helpful AI assistant named Securitron<|im_end|>
"""
conversation_history = []
while True:
user_prompt = input("\nUser Question: ")
if user_prompt.lower() == 'break':
break
user = f"""<|im_start|>user
{user_prompt}<|im_end|>
<|im_start|>assistant"""
conversation_history.append(user)
conversation_history = conversation_history[-5:]
current_prompt = prompt + "\n".join(conversation_history)
encodeds = tokenizer(current_prompt, return_tensors="pt", truncation=True).input_ids
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
inputs = encodeds.to(device)
generated_ids = inputs
assistant_response = ""
for _ in range(512):
next_token = model.generate(
generated_ids,
max_new_tokens=1,
pad_token_id=151644,
eos_token_id=151645,
num_return_sequences=1,
do_sample=False,
)
generated_ids = torch.cat([generated_ids, next_token[:, -1:]], dim=1)
token_id = next_token[0, -1].item()
token = tokenizer.decode([token_id], skip_special_tokens=True)
assistant_response += token
print(token, end="", flush=True)
if token_id == 151645:
break
conversation_history.append(f"{assistant_response.strip()}<|im_end|>")