bert-base-arabertv2_D3Tok_EMD_19levels

This model is a fine-tuned version of aubmindlab/bert-base-arabertv2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0306
  • Macro F1: 0.4521
  • Macro Precision: 0.4818
  • Macro Recall: 0.4453
  • Accuracy: 0.5291
  • Accuracy With Margin: 0.6966
  • Distance: 1.1860
  • Quadratic weighted kappa: 0.7940
  • Accuracy 7: 0.6300
  • Accuracy 5: 0.6726
  • Accuracy 3: 0.7412

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Macro F1 Macro Precision Macro Recall Accuracy Accuracy With Margin Distance Quadratic weighted kappa Accuracy 7 Accuracy 5 Accuracy 3
1.0454 1.0 857 0.9505 0.2627 0.3239 0.3181 0.4703 0.6428 1.3360 0.7758 0.6030 0.6647 0.7330
0.718 2.0 1714 0.8807 0.3647 0.3734 0.3709 0.5175 0.6841 1.1967 0.7981 0.6297 0.6787 0.7490
0.5604 3.0 2571 0.9115 0.4027 0.4449 0.3915 0.5353 0.6837 1.1989 0.7920 0.6305 0.6746 0.7393
0.4615 4.0 3428 0.9439 0.4163 0.4850 0.4124 0.5328 0.6830 1.2074 0.7942 0.6256 0.6699 0.7378
0.3547 5.0 4285 0.9803 0.4059 0.4732 0.3965 0.5215 0.6807 1.2193 0.7864 0.6218 0.6655 0.7363
0.2972 6.0 5142 0.9809 0.4499 0.4851 0.4425 0.5356 0.6856 1.2003 0.7931 0.6287 0.6695 0.7393
0.2529 7.0 5999 0.9922 0.4427 0.4791 0.4293 0.5280 0.6885 1.1907 0.7946 0.6268 0.6715 0.7431
0.2002 8.0 6856 1.0047 0.4516 0.4747 0.4448 0.5316 0.6902 1.1818 0.7974 0.6306 0.6731 0.7390
0.1734 9.0 7713 1.0181 0.4545 0.4949 0.4515 0.5353 0.6951 1.1945 0.7920 0.6354 0.6784 0.7440
0.1466 10.0 8570 1.0184 0.4469 0.4748 0.4414 0.5271 0.6951 1.1871 0.7960 0.6312 0.6739 0.7404
0.1342 11.0 9427 1.0291 0.4496 0.4739 0.4471 0.5287 0.6985 1.1815 0.7980 0.6328 0.6770 0.7446
0.1166 12.0 10284 1.0306 0.4521 0.4818 0.4453 0.5291 0.6966 1.1860 0.7940 0.6300 0.6726 0.7412

Framework versions

  • Transformers 4.53.2
  • Pytorch 2.6.0+cu124
  • Datasets 4.0.0
  • Tokenizers 0.21.2
Downloads last month
4
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Monda/bert-base-arabertv2_D3Tok_EMD_19levels

Finetuned
(64)
this model

Collection including Monda/bert-base-arabertv2_D3Tok_EMD_19levels