See axolotl config
axolotl version: 0.4.1
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1.0e-08
adapter: lora
base_model: EleutherAI/pythia-410m-deduped
bf16: true
chat_template: llama3
dataloader_num_workers: 4
dataloader_pin_memory: true
dataset_prepared_path: null
datasets:
- data_files:
- f483f621ec4ec954_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_instruction: instruct
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
dynamic_lora_per_layer: true
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 10241
eval_table_size: null
evaluation_strategy: steps
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clip_val: 1.0
group_by_length: false
hub_model_id: JoshMe1/f9c3f23f-7a34-4334-8947-a41aec1d49b1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 10
lora_alpha: 256
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 128
lora_target_linear: true
lr_finder: true
lr_scheduler: cosine
lr_scheduler_args: []
max_grad_norm: 1.0
max_memory:
0: 70GB
max_steps: 10000
micro_batch_size: 4
mixed_precision: bf16
mlflow_experiment_name: /tmp/f483f621ec4ec954_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 10241
save_strategy: steps
save_total_limit: 3
saves_per_epoch: null
scheduler:
factor: 0.5
monitor: eval_loss
patience: 1
threshold: 0.005
type: ReduceLROnPlateau
seed: 42
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
training_stages:
- learning_rate: 0.0002
name: warmup
num_train_epochs: 1
- learning_rate: 2.0e-05
name: main
trl:
ema: true
ema_decay: 0.999
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: de493da4-a11f-4036-a2d9-2001e9d5dbc8
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: de493da4-a11f-4036-a2d9-2001e9d5dbc8
warmup_steps: 1000
weight_decay: 0.01
xformers_attention: true
f9c3f23f-7a34-4334-8947-a41aec1d49b1
This model is a fine-tuned version of EleutherAI/pythia-410m-deduped on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- training_steps: 10000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0000 | 1 | 2.2481 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for JoshMe1/f9c3f23f-7a34-4334-8947-a41aec1d49b1
Base model
EleutherAI/pythia-410m-deduped