results

This model is a fine-tuned version of UBC-NLP/MARBERTv2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4492
  • F1-micro: 0.85
  • F1-macro: 0.8331
  • Jaccard: 0.7664

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1-micro F1-macro Jaccard
No log 1.0 7 0.6044 0.7908 0.7281 0.6838
No log 2.0 14 0.5586 0.8010 0.7369 0.6947
No log 3.0 21 0.5412 0.8010 0.7369 0.6947
No log 4.0 28 0.5293 0.8010 0.7369 0.6947
No log 5.0 35 0.5149 0.8010 0.7369 0.6947
No log 6.0 42 0.5050 0.81 0.7527 0.7087
No log 7.0 49 0.4927 0.8170 0.7660 0.7212
No log 8.0 56 0.4856 0.82 0.7749 0.7243
No log 9.0 63 0.4770 0.8221 0.7768 0.7290
No log 10.0 70 0.4679 0.8279 0.7930 0.7336
No log 11.0 77 0.4615 0.835 0.8044 0.7461
No log 12.0 84 0.4545 0.8392 0.8128 0.7523
No log 13.0 91 0.4512 0.845 0.8254 0.7586
No log 14.0 98 0.4496 0.85 0.8331 0.7664
0.4157 15.0 105 0.4492 0.85 0.8331 0.7664

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.1
Downloads last month
11
Safetensors
Model size
163M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Hashuz/AS_MentalQAU

Base model

UBC-NLP/MARBERTv2
Finetuned
(24)
this model

Space using Hashuz/AS_MentalQAU 1