results
This model is a fine-tuned version of UBC-NLP/MARBERTv2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4492
- F1-micro: 0.85
- F1-macro: 0.8331
- Jaccard: 0.7664
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | F1-micro | F1-macro | Jaccard |
---|---|---|---|---|---|---|
No log | 1.0 | 7 | 0.6044 | 0.7908 | 0.7281 | 0.6838 |
No log | 2.0 | 14 | 0.5586 | 0.8010 | 0.7369 | 0.6947 |
No log | 3.0 | 21 | 0.5412 | 0.8010 | 0.7369 | 0.6947 |
No log | 4.0 | 28 | 0.5293 | 0.8010 | 0.7369 | 0.6947 |
No log | 5.0 | 35 | 0.5149 | 0.8010 | 0.7369 | 0.6947 |
No log | 6.0 | 42 | 0.5050 | 0.81 | 0.7527 | 0.7087 |
No log | 7.0 | 49 | 0.4927 | 0.8170 | 0.7660 | 0.7212 |
No log | 8.0 | 56 | 0.4856 | 0.82 | 0.7749 | 0.7243 |
No log | 9.0 | 63 | 0.4770 | 0.8221 | 0.7768 | 0.7290 |
No log | 10.0 | 70 | 0.4679 | 0.8279 | 0.7930 | 0.7336 |
No log | 11.0 | 77 | 0.4615 | 0.835 | 0.8044 | 0.7461 |
No log | 12.0 | 84 | 0.4545 | 0.8392 | 0.8128 | 0.7523 |
No log | 13.0 | 91 | 0.4512 | 0.845 | 0.8254 | 0.7586 |
No log | 14.0 | 98 | 0.4496 | 0.85 | 0.8331 | 0.7664 |
0.4157 | 15.0 | 105 | 0.4492 | 0.85 | 0.8331 | 0.7664 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
- Downloads last month
- 11
Model tree for Hashuz/AS_MentalQAU
Base model
UBC-NLP/MARBERTv2