Administration_RuRoberta_base
This model is a fine-tuned version of sberbank-ai/ruRoberta-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.6447
- Accuracy: 0.4069
- Top 2 Accuracy: 0.5663
- Top 3 Accuracy: 0.6390
- Roc Auc: 0.9061
- F1: 0.3295
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 12
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Top 2 Accuracy | Top 3 Accuracy | Roc Auc | F1 |
---|---|---|---|---|---|---|---|---|
4.5494 | 1.0 | 262 | 3.5980 | 0.2653 | 0.3457 | 0.3992 | 0.7987 | 0.1532 |
3.5188 | 2.0 | 524 | 2.9169 | 0.3610 | 0.5102 | 0.5842 | 0.8921 | 0.2659 |
2.9534 | 3.0 | 786 | 2.7003 | 0.3954 | 0.5446 | 0.6314 | 0.9036 | 0.3091 |
2.3485 | 4.0 | 1048 | 2.6447 | 0.4069 | 0.5663 | 0.6390 | 0.9061 | 0.3295 |
Framework versions
- Transformers 4.55.2
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 11
Model tree for Goshective/Administration_RuRoberta_base
Base model
ai-forever/ruRoberta-large