c_detr_finetuned_crack

This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on the crack_det-single-class dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7720
  • Map: 0.7074
  • Map 50: 0.9889
  • Map 75: 0.8198
  • Map Small: -1.0
  • Map Medium: 0.4631
  • Map Large: 0.7157
  • Mar 1: 0.7587
  • Mar 10: 0.8086
  • Mar 100: 0.8472
  • Mar Small: -1.0
  • Mar Medium: 0.7188
  • Mar Large: 0.8516
  • Map Per Class: 0.7074
  • Mar 100 Per Class: 0.8472
  • Classes: 0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Per Class Mar 100 Per Class Classes
No log 1.0 210 1.4511 0.1004 0.3026 0.0548 -1.0 0.0077 0.1038 0.2008 0.4616 0.7195 -1.0 0.1688 0.7386 0.1004 0.7195 0
No log 2.0 420 1.2516 0.0905 0.2453 0.0614 -1.0 0.1688 0.093 0.1899 0.5191 0.7853 -1.0 0.4313 0.7976 0.0905 0.7853 0
1.6634 3.0 630 1.1064 0.2139 0.4163 0.2028 -1.0 0.1033 0.2192 0.413 0.7189 0.8205 -1.0 0.5938 0.8284 0.2139 0.8205 0
1.6634 4.0 840 0.9684 0.4121 0.6299 0.4671 -1.0 0.1894 0.4219 0.5736 0.782 0.8398 -1.0 0.7625 0.8425 0.4121 0.8398 0
1.0881 5.0 1050 0.8984 0.4627 0.6658 0.5446 -1.0 0.2979 0.4723 0.6428 0.8143 0.86 -1.0 0.7937 0.8623 0.4627 0.86 0
1.0881 6.0 1260 1.0028 0.4664 0.7552 0.5139 -1.0 0.2459 0.4754 0.5501 0.783 0.8325 -1.0 0.6875 0.8375 0.4664 0.8325 0
1.0881 7.0 1470 0.8905 0.5262 0.8111 0.6015 -1.0 0.371 0.5339 0.6394 0.8321 0.8658 -1.0 0.7625 0.8694 0.5262 0.8658 0
0.992 8.0 1680 0.8781 0.618 0.9105 0.6986 -1.0 0.3757 0.6277 0.6853 0.8124 0.8564 -1.0 0.7125 0.8614 0.618 0.8564 0
0.992 9.0 1890 0.8787 0.6643 0.9763 0.7691 -1.0 0.3965 0.6742 0.7086 0.8017 0.8457 -1.0 0.725 0.8499 0.6643 0.8457 0
0.9551 10.0 2100 0.8690 0.6572 0.9679 0.737 -1.0 0.392 0.6665 0.713 0.8082 0.852 -1.0 0.7937 0.854 0.6572 0.852 0
0.9551 11.0 2310 0.8356 0.6543 0.9343 0.7416 -1.0 0.414 0.6633 0.7109 0.8172 0.8648 -1.0 0.7125 0.8701 0.6543 0.8648 0
0.9588 12.0 2520 0.8476 0.6492 0.956 0.7496 -1.0 0.4645 0.6562 0.6971 0.8109 0.8486 -1.0 0.7375 0.8525 0.6492 0.8486 0
0.9588 13.0 2730 0.9063 0.6379 0.9608 0.7469 -1.0 0.4929 0.644 0.6956 0.7706 0.8096 -1.0 0.7125 0.813 0.6379 0.8096 0
0.9588 14.0 2940 0.8993 0.647 0.9674 0.7443 -1.0 0.4055 0.6558 0.7013 0.7897 0.8283 -1.0 0.7188 0.8321 0.647 0.8283 0
0.944 15.0 3150 0.8545 0.6804 0.9804 0.7761 -1.0 0.4121 0.6895 0.7268 0.7874 0.8038 -1.0 0.7063 0.8072 0.6804 0.8038 0
0.944 16.0 3360 0.8423 0.6671 0.9738 0.7776 -1.0 0.4201 0.6762 0.7243 0.8109 0.8514 -1.0 0.7375 0.8553 0.6671 0.8514 0
0.9288 17.0 3570 0.8323 0.6785 0.9845 0.7896 -1.0 0.4709 0.6854 0.7302 0.7975 0.8392 -1.0 0.7563 0.8421 0.6785 0.8392 0
0.9288 18.0 3780 0.8367 0.6676 0.9833 0.7846 -1.0 0.5013 0.6744 0.7233 0.792 0.8444 -1.0 0.6875 0.8499 0.6676 0.8444 0
0.9288 19.0 3990 0.8186 0.6799 0.9815 0.7832 -1.0 0.454 0.6882 0.7262 0.8004 0.8438 -1.0 0.7312 0.8477 0.6799 0.8438 0
0.8787 20.0 4200 0.8029 0.6936 0.9888 0.8104 -1.0 0.4717 0.7014 0.7419 0.8063 0.8457 -1.0 0.7 0.8508 0.6936 0.8457 0
0.8787 21.0 4410 0.7984 0.6925 0.9848 0.8231 -1.0 0.4922 0.6996 0.7472 0.8015 0.8405 -1.0 0.7063 0.8451 0.6925 0.8405 0
0.871 22.0 4620 0.7899 0.6954 0.9894 0.81 -1.0 0.444 0.7039 0.7562 0.8099 0.8447 -1.0 0.7437 0.8482 0.6954 0.8447 0
0.871 23.0 4830 0.7953 0.6981 0.9873 0.8177 -1.0 0.4464 0.7065 0.7528 0.804 0.8367 -1.0 0.7 0.8414 0.6981 0.8367 0
0.8376 24.0 5040 0.7875 0.697 0.9881 0.8162 -1.0 0.4791 0.7054 0.7553 0.805 0.8405 -1.0 0.725 0.8445 0.697 0.8405 0
0.8376 25.0 5250 0.7761 0.7021 0.9876 0.8154 -1.0 0.4685 0.7104 0.7543 0.8099 0.8472 -1.0 0.7375 0.851 0.7021 0.8472 0
0.8376 26.0 5460 0.7657 0.7044 0.9875 0.8291 -1.0 0.48 0.7122 0.7532 0.8128 0.8507 -1.0 0.7312 0.8549 0.7044 0.8507 0
0.8359 27.0 5670 0.7697 0.7052 0.9883 0.8224 -1.0 0.4599 0.7137 0.7553 0.8088 0.8465 -1.0 0.7188 0.851 0.7052 0.8465 0
0.8359 28.0 5880 0.7708 0.7072 0.9879 0.8273 -1.0 0.4554 0.716 0.7574 0.8096 0.8493 -1.0 0.7 0.8544 0.7072 0.8493 0
0.8179 29.0 6090 0.7714 0.7076 0.9887 0.8244 -1.0 0.4626 0.7161 0.7589 0.8082 0.8463 -1.0 0.725 0.8505 0.7076 0.8463 0
0.8179 30.0 6300 0.7720 0.7074 0.9889 0.8198 -1.0 0.4631 0.7157 0.7587 0.8086 0.8472 -1.0 0.7188 0.8516 0.7074 0.8472 0

Framework versions

  • Transformers 4.55.4
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.4
Downloads last month
52
Safetensors
Model size
43.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Fardan/c_detr_finetuned_crack

Finetuned
(81)
this model