YAML Metadata
Warning:
The pipeline tag "text2text-generation" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other
Yoruba Roman Numerals Expert System π³π¬π’
This model is fine-tuned from google/byt5-small to translate Roman numerals (e.g. 'i','v','x','XIV
, VΜ
M
, up to 6000) into Yoruba text.
Example Usage
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("Emeritus-21/yorubanumerals-expertsystem")
model = AutoModelForSeq2SeqLM.from_pretrained("Emeritus-21/yorubanumerals-expertsystem")
inputs = tokenizer("VΜ
M", return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
- Downloads last month
- 3
Model tree for Emeritus-21/yorubanumerals-expertsystem
Base model
google/byt5-small