DFloat11 Compressed Model: Qwen/Qwen-Image
This is a DFloat11 losslessly compressed version of the original Qwen/Qwen-Image
model. It reduces model size by 32% compared to the original BFloat16 model, while maintaining bit-identical outputs and supporting efficient GPU inference.
๐ฅ๐ฅ๐ฅ Thanks to DFloat11 compression, Qwen-Image can now run on a single 32GB GPU, or on a single 16GB GPU with CPU offloading, while maintaining full model quality. ๐ฅ๐ฅ๐ฅ
๐ Performance Comparison
Model | Model Size | Peak GPU Memory (1328x1328 image generation) | Generation Time (A100 GPU) |
---|---|---|---|
Qwen-Image (BFloat16) | ~41 GB | OOM | - |
Qwen-Image (DFloat11) | 28.42 GB | 29.74 GB | 100 seconds |
Qwen-Image (DFloat11 + GPU Offloading) | 28.42 GB | 16.68 GB | 260 seconds |
๐ง How to Use
Install or upgrade the DFloat11 pip package (installs the CUDA kernel automatically; requires a CUDA-compatible GPU and PyTorch installed):
pip install -U dfloat11[cuda12]
Install or upgrade diffusers:
pip install git+https://github.com/huggingface/diffusers
Save the following code to a Python file
qwen_image.py
:from diffusers import DiffusionPipeline, QwenImageTransformer2DModel import torch from transformers.modeling_utils import no_init_weights from dfloat11 import DFloat11Model import argparse def parse_args(): parser = argparse.ArgumentParser(description='Generate images using Qwen-Image model') parser.add_argument('--cpu_offload', action='store_true', help='Enable CPU offloading') parser.add_argument('--no_pin_memory', action='store_true', help='Disable memory pinning') parser.add_argument('--prompt', type=str, default='A coffee shop entrance features a chalkboard sign reading "Qwen Coffee ๐ $2 per cup," with a neon light beside it displaying "้ไนๅ้ฎ". Next to it hangs a poster showing a beautiful Chinese woman, and beneath the poster is written "ฯโ3.1415926-53589793-23846264-33832795-02384197".', help='Text prompt for image generation') parser.add_argument('--negative_prompt', type=str, default=' ', help='Negative prompt for image generation') parser.add_argument('--aspect_ratio', type=str, default='16:9', choices=['1:1', '16:9', '9:16', '4:3', '3:4'], help='Aspect ratio of generated image') parser.add_argument('--num_inference_steps', type=int, default=50, help='Number of denoising steps') parser.add_argument('--true_cfg_scale', type=float, default=4.0, help='Classifier free guidance scale') parser.add_argument('--seed', type=int, default=42, help='Random seed for generation') parser.add_argument('--output', type=str, default='example.png', help='Output image path') parser.add_argument('--language', type=str, default='en', choices=['en', 'zh'], help='Language for positive magic prompt') return parser.parse_args() args = parse_args() model_name = "Qwen/Qwen-Image" with no_init_weights(): transformer = QwenImageTransformer2DModel.from_config( QwenImageTransformer2DModel.load_config( model_name, subfolder="transformer", ), ).to(torch.bfloat16) DFloat11Model.from_pretrained( "DFloat11/Qwen-Image-DF11", device="cpu", cpu_offload=args.cpu_offload, pin_memory=not args.no_pin_memory, bfloat16_model=transformer, ) pipe = DiffusionPipeline.from_pretrained( model_name, transformer=transformer, torch_dtype=torch.bfloat16, ) pipe.enable_model_cpu_offload() positive_magic = { "en": "Ultra HD, 4K, cinematic composition.", # for english prompt, "zh": "่ถ ๆธ ๏ผ4K๏ผ็ตๅฝฑ็บงๆๅพ" # for chinese prompt, } # Generate with different aspect ratios aspect_ratios = { "1:1": (1328, 1328), "16:9": (1664, 928), "9:16": (928, 1664), "4:3": (1472, 1140), "3:4": (1140, 1472), } width, height = aspect_ratios[args.aspect_ratio] image = pipe( prompt=args.prompt + positive_magic[args.language], negative_prompt=args.negative_prompt, width=width, height=height, num_inference_steps=args.num_inference_steps, true_cfg_scale=args.true_cfg_scale, generator=torch.Generator(device="cuda").manual_seed(args.seed) ).images[0] image.save(args.output) max_memory = torch.cuda.max_memory_allocated() print(f"Max memory: {max_memory / (1000 ** 3):.2f} GB")
To run without CPU offloading (32GB VRAM required):
python qwen_image.py
To run with CPU offloading (16GB VRAM required):
python qwen_image.py --cpu_offload
If you are getting out-of-memory errors, try disabling memory-pinning:
python qwen_image.py --cpu_offload --no_pin_memory
๐ How It Works
We apply Huffman coding to losslessly compress the exponent bits of BFloat16 model weights, which are highly compressible (their 8 bits carry only ~2.6 bits of actual information). To enable fast inference, we implement a highly efficient CUDA kernel that performs on-the-fly weight decompression directly on the GPU.
The result is a model that is ~32% smaller, delivers bit-identical outputs, and achieves performance comparable to the original BFloat16 model.
Learn more in our research paper.
๐ Learn More
- Downloads last month
- 2,205
Model tree for DFloat11/Qwen-Image-DF11
Base model
Qwen/Qwen-Image