ASL Sign Language Classification Model
This model is trained to recognize American Sign Language (ASL) alphabets using the ASL Alphabet Dataset.
It uses a ResNet50 backbone for image classification.
Model Details
- Base Architecture: ResNet50
- Number of Classes: 29
- Test Accuracy: 0.9999
- Dataset: ASL Alphabet (AโZ, space, delete, nothing)
Usage
from transformers import AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import torch
# Load model and processor
model = AutoModelForImageClassification.from_pretrained("Abuzaid01/asl-sign-language-classifier")
processor = AutoImageProcessor.from_pretrained("Abuzaid01/asl-sign-language-classifier")
# Load an image
image = Image.open("asl_sample.jpg")
# Preprocess
inputs = processor(images=image, return_tensors="pt")
# Predict
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class])
- Downloads last month
- 41
Evaluation results
- Accuracy on ASL Alphabet Datasettest set self-reported1.000