import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import sys # sys.path.append("..") # sys.path.append("../../") from ... import utils as util # Load peft config for pre-trained checkpoint etc. class T5XXL_NL2TL_translator(): def __init__(self) -> None: # exp_name="_mid_ascii" peft_model_id="model_weight/tf-ltl_eng_test_mid_ascii_gptAuged" self.max_target_length=128 self.config = PeftConfig.from_pretrained(peft_model_id) # load base LLM model and tokenizer self.model = AutoModelForSeq2SeqLM.from_pretrained(self.config.base_model_name_or_path, load_in_8bit=True, device_map="auto") self.tokenizer = AutoTokenizer.from_pretrained(self.config.base_model_name_or_path, device_map="auto") # Load the Lora model self.model = PeftModel.from_pretrained(self.model, peft_model_id, device_map="auto") self.model.eval() print("Peft model loaded") pass def translate(self,input:str=""): input_prompt= "Generate LTL: " + input replace=util.Task2Preplacer() input_prompt=replace.reTask2P(input_prompt) # print(predicter( replace.reTask2P(input_prompt))) print(input_prompt) input_ids = self.tokenizer(input_prompt, return_tensors="pt", truncation=True).input_ids.cuda() outputs = self.model.generate(input_ids=input_ids, max_new_tokens=self.max_target_length, do_sample=True, top_p=0.9) output_txt= self.tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0] print(output_txt) return replace.reP2Task(output_txt) if __name__=="__main__": test_prompts=[ "Task_1.1.1 must precede Task_1.1.2, which in turn should precede Task_1.1.3, ensuring that arranging fruits happens before preparing vegetables and prepping eggs and meats is done last.", "Task_1.1 must be completed before Task_1.2 starts, and Task_1.2 must be completed before Task_1.3 starts." ] translater=T5XXL_NL2TL_translator() for ret in test_prompts: print(translater.translate(ret)) flag=True while flag: lines=[""] try: lines.append(input()) while True: lines.append(input()) except: pass ret ="".join(lines) print(ret) if ret=="": flag=False print(translater.translate(ret))