--- library_name: transformers pipeline_tag: image-text-to-text inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - Qwen/Qwen3-VL-235B-A22B-Instruct --- This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [Qwen/Qwen3-VL-235B-A22B-Instruct](https://huggingface.co/Qwen/Qwen3-VL-235B-A22B-Instruct). ### Example usage: ```python import numpy as np import torch import transformers from PIL import Image from transformers import ( AutoModel, AutoModelForCausalLM, AutoProcessor, AutoTokenizer, Qwen3VLMoeForConditionalGeneration, ) model_id = "tiny-random/qwen3-vl-moe" model = Qwen3VLMoeForConditionalGeneration.from_pretrained( model_id, dtype=torch.bfloat16, device_map="cuda", # attn_implementation="flash_attention_2", ) processor = AutoProcessor.from_pretrained(model_id) messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", }, {"type": "text", "text": "Describe this image."}, ], } ] # Preparation for inference inputs = processor.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_dict=True, return_tensors="pt" ).to(model.device) # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=32) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, GenerationConfig, Qwen3VLMoeForConditionalGeneration, set_seed, ) source_model_id = "Qwen/Qwen3-VL-235B-A22B-Instruct" save_folder = "/tmp/tiny-random/qwen3-vl-moe" processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) config_json['text_config'].update({ 'head_dim': 32, 'hidden_size': 8, 'intermediate_size': 64, 'moe_intermediate_size': 64, 'num_hidden_layers': 2, 'num_attention_heads': 8, 'num_key_value_heads': 4, 'num_experts': 16, # 'decoder_sparse_step': 2, }) config_json['text_config']['rope_scaling']['mrope_section'] = [8, 4, 4] config_json['vision_config'].update( { 'hidden_size': 64, 'intermediate_size': 64, 'num_heads': 2, 'out_hidden_size': 8, 'depth': 6, 'deepstack_visual_indexes': [1, 3, 5], } ) with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = Qwen3VLMoeForConditionalGeneration(config) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) model.generation_config.do_sample = True print(model.generation_config) model = model.cpu() with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) ``` ### Printing the model: ```text Qwen3VLMoeForConditionalGeneration( (model): Qwen3VLMoeModel( (visual): Qwen3VLMoeVisionModel( (patch_embed): Qwen3VLMoeVisionPatchEmbed( (proj): Conv3d(3, 64, kernel_size=(2, 16, 16), stride=(2, 16, 16)) ) (pos_embed): Embedding(2304, 64) (rotary_pos_emb): Qwen3VLMoeVisionRotaryEmbedding() (blocks): ModuleList( (0-5): 6 x Qwen3VLMoeVisionBlock( (norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True) (norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True) (attn): Qwen3VLMoeVisionAttention( (qkv): Linear(in_features=64, out_features=192, bias=True) (proj): Linear(in_features=64, out_features=64, bias=True) ) (mlp): Qwen3VLMoeVisionMLP( (linear_fc1): Linear(in_features=64, out_features=64, bias=True) (linear_fc2): Linear(in_features=64, out_features=64, bias=True) (act_fn): PytorchGELUTanh() ) ) ) (merger): Qwen3VLMoeVisionPatchMerger( (norm): LayerNorm((64,), eps=1e-06, elementwise_affine=True) (linear_fc1): Linear(in_features=256, out_features=256, bias=True) (act_fn): GELU(approximate='none') (linear_fc2): Linear(in_features=256, out_features=8, bias=True) ) (deepstack_merger_list): ModuleList( (0-2): 3 x Qwen3VLMoeVisionPatchMerger( (norm): LayerNorm((256,), eps=1e-06, elementwise_affine=True) (linear_fc1): Linear(in_features=256, out_features=256, bias=True) (act_fn): GELU(approximate='none') (linear_fc2): Linear(in_features=256, out_features=8, bias=True) ) ) ) (language_model): Qwen3VLMoeTextModel( (embed_tokens): Embedding(151936, 8) (layers): ModuleList( (0-1): 2 x Qwen3VLMoeTextDecoderLayer( (self_attn): Qwen3VLMoeTextAttention( (q_proj): Linear(in_features=8, out_features=256, bias=False) (k_proj): Linear(in_features=8, out_features=128, bias=False) (v_proj): Linear(in_features=8, out_features=128, bias=False) (o_proj): Linear(in_features=256, out_features=8, bias=False) (q_norm): Qwen3VLMoeTextRMSNorm((32,), eps=1e-06) (k_norm): Qwen3VLMoeTextRMSNorm((32,), eps=1e-06) ) (mlp): Qwen3VLMoeTextSparseMoeBlock( (gate): Qwen3VLMoeTextRouter(in_features=8, out_features=16, bias=False) (experts): Qwen3VLMoeTextExperts( (act_fn): SiLU() ) ) (input_layernorm): Qwen3VLMoeTextRMSNorm((8,), eps=1e-06) (post_attention_layernorm): Qwen3VLMoeTextRMSNorm((8,), eps=1e-06) ) ) (norm): Qwen3VLMoeTextRMSNorm((8,), eps=1e-06) (rotary_emb): Qwen3VLMoeTextRotaryEmbedding() ) ) (lm_head): Linear(in_features=8, out_features=151936, bias=False) ) ```