Transformers
GGUF
conversational
File size: 7,362 Bytes
3385db8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fab91ed
3385db8
 
fab91ed
 
 
3385db8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
<p align="center">
 <img src="https://dscache.tencent-cloud.cn/upload/uploader/hunyuan-64b418fd052c033b228e04bc77bbc4b54fd7f5bc.png" width="400"/> <br>
</p><p></p>

<p align="center">
    🫣&nbsp;<a href="https://huggingface.co/tencent/Hunyuan-A13B-Instruct"><b>Hugging Face</b></a>&nbsp;&nbsp;|&nbsp;&nbsp;
    🖥️&nbsp;<a href="https://llm.hunyuan.tencent.com/" style="color: red;"><b>Official Website</b></a>&nbsp;&nbsp;|&nbsp;&nbsp;
    🕖&nbsp;<a href="https://cloud.tencent.com/product/hunyuan"><b>HunyuanAPI</b></a>&nbsp;&nbsp;|&nbsp;&nbsp;
    🕹️&nbsp;<a href="https://hunyuan.tencent.com/?model=hunyuan-a13b"><b>Demo</b></a>&nbsp;&nbsp;|&nbsp;&nbsp;
    <img src="https://avatars.githubusercontent.com/u/109945100?s=200&v=4" width="16"/>&nbsp;<a href="https://modelscope.cn/models/Tencent-Hunyuan/Hunyuan-A13B-Instruct"><b>ModelScope</b></a>
</p>

<p align="center">
    <a href="https://github.com/Tencent/Hunyuan-A13B"><b>GITHUB</b></a>
</p>




## 模型介绍

随着人工智能技术的快速发展,大型语言模型(LLMs)在自然语言处理、计算机视觉和科学任务等领域取得了显著进展。然而,随着模型规模的扩大,如何在保持高性能的同时优化资源消耗成为一个关键挑战。为了应对这一挑战,我们研究了混合专家(MoE)模型,当前亮相的 Hunyuan-A13B 模型,拥有800亿总参数和130亿激活参数。不仅在效果上达到了高标准,而且在尺寸上也做到了极致的优化,成功平衡了模型性能与资源占用。


### 核心特性与优势
-**小参数量,高性能**​:仅激活130亿参数(总参数量800亿),即可在多样化基准任务中媲美更大规模模型的竞争力表现 
-**混合推理支持**​:同时支持快思考和慢思考两种模式,支持用户灵活选择 
-**超长上下文理解**​:原生支持256K上下文窗口,在长文本任务中保持稳定性能
-**增强Agent能力**​:优化Agent能力,在BFCL-v3、τ-Bench等智能体基准测试中领先
-**高效推理**​:采用分组查询注意力(GQA)策略,支持多量化格式,实现高效推理
    

### 为何选择Hunyuan-A13B?
作为兼具强大性能与计算效率的大模型,Hunyuan-A13B是研究者与开发者在资源受限条件下追求高性能的理想选择。无论学术研究、高性价比AI解决方案开发,还是创新应用探索,本模型都能提供强大的基础支持。


&nbsp;

## 新闻
<br>

* 2025.6.26 我们在Hugging Face开源了 **Hunyuan-A13B-Instruct****Hunyuan-A13B-Pretrain**, **Hunyuan-A13B-Instruct-FP8****Hunyuan-A13B-Instruct-GPTQ-Int4**。并发布了技术报告和训练推理操作手册,详细介绍了模型能力和训练与推理的操作。

## 模型结构

Hunyuan-A13B采用了细粒度混合专家(Fine-grained Mixture of Experts,Fine-grained MoE)架构,包含800亿参数和130亿激活参数,累计训练了超过 20T tokens。该模型支持 256K 的上下文长度,以下为模型结构细节:
* 总参数: 80B
* 激活参数: 13B
* 层数: 32
* Attention Heads: 32
* 共享专家数: 1
* 非共享专家数: 64
* 路由策略: Top-8
* 激活函数: SwiGLU
* 隐层维度: 4096
* 专家隐层维度: 3072 

## Benchmark评估榜单 

**Hunyuan-A13B-Pretrain** 在 12/14 个任务上超越了Hunyuan上一代52B激活参数的MoE模型Hunyuan-Large,证实了它在预训练任务上出色的能力。与业界更大参数量的Dense和MoE模型相比, Hunyuan-A13B在多个代码和数学任务上都取得了最高分数。在MMLU, MMLU-PRO等诸多众聚合任务上, Hunyuan-A13B达到了与Qwen3-A22B模型同等的水平,表现出优秀的综合能力。

| Model            | Hunyuan-Large | Qwen2.5-72B  | Qwen3-A22B | Hunyuan-A13B |
|------------------|---------------|--------------|-------------|---------------|
| MMLU             | 88.40          | 86.10         | 87.81        | 88.17          |
| MMLU-Pro         | 60.20          | 58.10        | 68.18           | 67.23          |
| MMLU-Redux              |  87.47         | 83.90         | 87.40        | 87.67          |
| BBH        | 86.30             | 85.80            | 88.87        | 87.56          |
| SuperGPQA    |  38.90         | 36.20          | 44.06           | 41.32          |
| EvalPlus       | 75.69          | 65.93         | 77.60        | 78.64          |
| MultiPL-E             | 59.13             | 60.50            | 65.94        | 69.33          |
| MBPP | 72.60             | 76.00            | 81.40        | 83.86          |
| CRUX-I             | 57.00          | 57.63          | -        | 70.13          |
| CRUX-O             | 60.63          | 66.20          | 79.00        | 77.00          |
| MATH            | 69.80          | 62.12         | 71.84        | 72.35          |
| CMATH            | 91.30          | 84.80         | -        | 91.17          |
| GSM8k         | 92.80             | 91.50           | 94.39        | 91.83          |
| GPQA            | 25.18             | 45.90            | 47.47        | 49.12          |

**Hunyuan-A13B-Instruct** 在多项基准测试中取得了极具有竞争力的表现,尤其是在数学、科学、agent等领域。我们与一些强力模型进行了对比,结果如下所示。

| Topic               | Bench                         | OpenAI-o1-1217 | DeepSeek R1 | Qwen3-A22B | Hunyuan-A13B-Instruct |
|:-------------------:|:-----------------------------:|:-------------:|:------------:|:-----------:|:---------------------:|
| **Mathematics**     | AIME 2024<br>AIME 2025<br>MATH | 74.3<br>79.2<br>96.4 | 79.8<br>70<br>94.9 | 85.7<br>81.5<br>94.0 | 87.3<br>76.8<br>94.3 |
| **Science**         | GPQA-Diamond<br>OlympiadBench | 78<br>83.1 | 71.5<br>82.4 | 71.1<br>85.7 | 71.2<br>82.7 |
| **Coding**          | Livecodebench<br>Fullstackbench<br>ArtifactsBench | 63.9<br>64.6<br>38.6 | 65.9<br>71.6<br>44.6 | 70.7<br>65.6<br>44.6 | 63.9<br>67.8<br>43 |
| **Reasoning**       | BBH<br>DROP<br>ZebraLogic    | 80.4<br>90.2<br>81 | 83.7<br>92.2<br>78.7 | 88.9<br>90.3<br>80.3 | 89.1<br>91.1<br>84.7 |
| **Instruction<br>Following** | IF-Eval<br>SysBench  | 91.8<br>82.5 | 88.3<br>77.7 | 83.4<br>74.2 | 84.7<br>76.1 |
| **Text<br>Creation**| LengthCtrl<br>InsCtrl       | 60.1<br>74.8 | 55.9<br>69 | 53.3<br>73.7 | 55.4<br>71.9 |
| **NLU**             | ComplexNLU<br>Word-Task     | 64.7<br>67.1 | 64.5<br>76.3 | 59.8<br>56.4 | 61.2<br>62.9 |
| **Agent**           | BDCL v3<br> τ-Bench<br>ComplexFuncBench<br> $C^3$-Bench | 67.8<br>60.4<br>47.6<br>58.8 | 56.9<br>43.8<br>41.1<br>55.3 | 70.8<br>44.6<br>40.6<br>51.7 | 78.3<br>54.7<br>61.2<br>63.5 |


&nbsp;

## 快速入门

### llama.cpp

你可以克隆 [`llama.cpp`](https://github.com/ggerganov/llama.cpp) 并按照其官方指南进行安装。通过下方参考代码运行推理。

```shell
llama-cli -hf tencent/Hunyuan-A13B-Instruct-GGUF:Q4_0 -p "Write a short summary of the benefits of regular exercise" -n 4096 temp 0.7 --top-k 20 --top-p 0.8 --repeat-penalty 1.05 --no-warmup
```

### ollama

未来将会支持。当前建议使用 llama.cpp 进行推理。

## 联系我们
如果你想给我们的研发和产品团队留言,欢迎联系我们腾讯混元LLM团队。你可以通过邮件(hunyuan_opensource@tencent.com)联系我们。