---
license: apache-2.0
base_model:
- microsoft/conditional-detr-resnet-50
pipeline_tag: object-detection
datasets:
- tech4humans/signature-detection
metrics:
- f1
- precision
- recall
library_name: transformers
inference: false
tags:
- object-detection
- signature-detection
- detr
- conditional-detr
- pytorch
model-index:
- name: tech4humans/conditional-detr-50-signature-detector
results:
- task:
type: object-detection
dataset:
type: tech4humans/signature-detection
name: tech4humans/signature-detection
split: test
metrics:
- type: precision
value: 0.936524
name: mAP@0.5
- type: precision
value: 0.653321
name: mAP@0.5:0.95
---
# **Conditional-DETR ResNet-50 - Handwritten Signature Detection**
This repository presents a Conditional-DETR model with ResNet-50 backbone, fine-tuned to detect handwritten signatures in document images. This model achieved the **highest mAP@0.5 (93.65%)** among all tested architectures in our comprehensive evaluation.
| Resource | Links / Badges | Details |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **Article** | [](https://huggingface.co/blog/samuellimabraz/signature-detection-model) | A detailed community article covering the full development process of the project |
| **Model Files (YOLOv8s)** | [](https://huggingface.co/tech4humans/yolov8s-signature-detector) | **Available formats:** [](https://pytorch.org/) [](https://onnx.ai/) [](https://developer.nvidia.com/tensorrt) |
| **Dataset – Original** | [](https://universe.roboflow.com/tech-ysdkk/signature-detection-hlx8j) | 2,819 document images annotated with signature coordinates |
| **Dataset – Processed** | [](https://huggingface.co/datasets/tech4humans/signature-detection) | Augmented and pre-processed version (640px) for model training |
| **Notebooks – Model Experiments** | [](https://colab.research.google.com/drive/1wSySw_zwyuv6XSaGmkngI4dwbj-hR4ix) [](https://api.wandb.ai/links/samuel-lima-tech4humans/30cmrkp8) | Complete training and evaluation pipeline with selection among different architectures (yolo, detr, rt-detr, conditional-detr, yolos) |
| **Notebooks – HP Tuning** | [](https://colab.research.google.com/drive/1wSySw_zwyuv6XSaGmkngI4dwbj-hR4ix) [](https://api.wandb.ai/links/samuel-lima-tech4humans/31a6zhb1) | Optuna trials for optimizing the precision/recall balance |
| **Inference Server** | [](https://github.com/tech4ai/t4ai-signature-detect-server) | Complete deployment and inference pipeline with Triton Inference Server
[](https://docs.openvino.ai/2025/index.html) [](https://www.docker.com/) [](https://developer.nvidia.com/triton-inference-server) |
| **Live Demo** | [](https://huggingface.co/spaces/tech4humans/signature-detection) | Graphical interface with real-time inference
[](https://www.gradio.app/) [](https://plotly.com/python/) |
---
## **Dataset**
|
|
|
|
📧 Email: iag@tech4h.com.br
🌐 Website: www.tech4.ai
💼 LinkedIn: Tech4Humans
Samuel LimaAI Research Engineer |
Responsibilities in this Project
|
Developed with 💜 by Tech4Humans