Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,419 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
library_name: transformers
|
4 |
+
---
|
5 |
+
<div align="center">
|
6 |
+
<picture>
|
7 |
+
<img src="stepfun-logo.png" width="30%" alt="StepFun: Cost-Effective Multimodal Intelligence">
|
8 |
+
</picture>
|
9 |
+
</div>
|
10 |
+
|
11 |
+
<hr>
|
12 |
+
|
13 |
+
<div align="center" style="line-height:1">
|
14 |
+
<a href="https://stepfun.com/" target="_blank"><img alt="Chat" src="https://img.shields.io/badge/Chat-StepFun-ff6b6b?color=1783ff&logoColor=white"/></a>
|
15 |
+
<a href="https://stepfun.com/" target="_blank"><img alt="Homepage" src="https://img.shields.io/badge/Homepage-StepFun-white?logo=StepFun&logoColor=white"/></a>
|
16 |
+
</div>
|
17 |
+
|
18 |
+
<div align="center" style="line-height: 1;">
|
19 |
+
<a href="https://github.com/stepfun-ai/Step3" target="_blank"><img alt="Github" src="https://img.shields.io/badge/🤖Github-StepFun-ffc107?color=ffc107&logoColor=white"/></a>
|
20 |
+
<a href="https://www.modelscope.cn/models/stepfun-ai/step3" target="_blank"><img alt="ModelScope" src="https://img.shields.io/badge/🤖ModelScope-StepFun-ffc107?color=7963eb&logoColor=white"/></a>
|
21 |
+
<a href="https://x.com/StepFun_ai" target="_blank"><img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-StepFun-white?logo=x&logoColor=white"/></a>
|
22 |
+
</div>
|
23 |
+
|
24 |
+
<div align="center" style="line-height: 1;">
|
25 |
+
<a href="https://discord.com/invite/XHheP5Fn" target="_blank"><img alt="Discord" src="https://img.shields.io/badge/Discord-StepFun-white?logo=discord&logoColor=white"/></a>
|
26 |
+
<a href="LICENSE"><img alt="License" src="https://img.shields.io/badge/License-Apache%202.0-blue?&color=blue"/></a>
|
27 |
+
</div>
|
28 |
+
|
29 |
+
<div align="center">
|
30 |
+
<b>📰 <a href="https://stepfun.ai/research/step3">Step3 Model Blog</a></b> | <b>📄 <a href="https://arxiv.org/abs/2507.19427">Step3 System Blog</a></b>
|
31 |
+
</div>
|
32 |
+
|
33 |
+
## Introduction
|
34 |
+
|
35 |
+
Step3 is our cutting-edge multimodal reasoning model—built on a Mixture-of-Experts architecture with 321B total parameters and 38B active.
|
36 |
+
It is designed end-to-end to minimize decoding costs while delivering top-tier performance in vision–language reasoning.
|
37 |
+
Through the co-design of Multi-Matrix Factorization Attention (MFA) and Attention-FFN Disaggregation (AFD),
|
38 |
+
Step3 maintains exceptional efficiency across both flagship and low-end accelerators.
|
39 |
+
|
40 |
+
### Step3 model card:
|
41 |
+
|
42 |
+
| Config | Value |
|
43 |
+
|------------------------|---------|
|
44 |
+
| **Number of Layers (Dense layer included)**|61|
|
45 |
+
|**Number of Dense Layers**| 5|
|
46 |
+
| **Hidden Dimension** | 7168 |
|
47 |
+
| **Attention Mechanism** | MFA |
|
48 |
+
| **Low-rank Query Dimension** | 2048 |
|
49 |
+
| **Number of Query Heads** | 64 |
|
50 |
+
| **Head Dimension** | 256 |
|
51 |
+
|**Number of Experts** |48|
|
52 |
+
|**Selected Experts per Token**|3|
|
53 |
+
|**Number of Shared Experts**| 1|
|
54 |
+
| **Max Context Length** | 65536 |
|
55 |
+
| **Tokenizer** | Deepseek V3 |
|
56 |
+
| **Total Parameters (LLM)** | 316B |
|
57 |
+
| **Activated Params per Token** | 38B |
|
58 |
+
| **Total Parameters (VLM)** | 321B |
|
59 |
+
|
60 |
+
|
61 |
+
## Evaluation Results
|
62 |
+
<table>
|
63 |
+
<thead>
|
64 |
+
<tr>
|
65 |
+
<th></th>
|
66 |
+
<th>Model</th>
|
67 |
+
<th>Total Params.</th>
|
68 |
+
<th>MMMU</th>
|
69 |
+
<th>MathVision</th>
|
70 |
+
<th>ZeroBench(sub)</th>
|
71 |
+
<th>DYNAMATH</th>
|
72 |
+
<th>SimpleVQA</th>
|
73 |
+
<th>HallusionBench</th>
|
74 |
+
<th>AIME25</th>
|
75 |
+
<th>HMMT25</th>
|
76 |
+
<th>CNMO24</th>
|
77 |
+
<th>GPQA-Diamond</th>
|
78 |
+
<th>LiveCodeBench<br>(24.8-25.5)</th>
|
79 |
+
</tr>
|
80 |
+
</thead>
|
81 |
+
<tbody>
|
82 |
+
<tr>
|
83 |
+
<td rowspan="6">Open-Source VLM</td>
|
84 |
+
<td>Step3</td>
|
85 |
+
<td>321B</td>
|
86 |
+
<td>74.2</td>
|
87 |
+
<td>64.8</td>
|
88 |
+
<td>23.0</td>
|
89 |
+
<td>50.1</td>
|
90 |
+
<td>62.2</td>
|
91 |
+
<td>64.2</td>
|
92 |
+
<td>82.9</td>
|
93 |
+
<td>70.0</td>
|
94 |
+
<td>83.7</td>
|
95 |
+
<td>73.0</td>
|
96 |
+
<td>67.1</td>
|
97 |
+
</tr>
|
98 |
+
<tr>
|
99 |
+
<td>ERINE4.5 - thinking</td>
|
100 |
+
<td>300B/424B</td>
|
101 |
+
<td>70.0</td>
|
102 |
+
<td>47.6</td>
|
103 |
+
<td>22.5</td>
|
104 |
+
<td>46.9</td>
|
105 |
+
<td>59.8</td>
|
106 |
+
<td>60.0</td>
|
107 |
+
<td>35.1</td>
|
108 |
+
<td>40.5*</td>
|
109 |
+
<td>75.5</td>
|
110 |
+
<td>76.8</td>
|
111 |
+
<td>38.8</td>
|
112 |
+
</tr>
|
113 |
+
<tr>
|
114 |
+
<td>GLM-4.1V-thinking</td>
|
115 |
+
<td>9B</td>
|
116 |
+
<td>68.0</td>
|
117 |
+
<td>49.4</td>
|
118 |
+
<td>22.8</td>
|
119 |
+
<td>41.9</td>
|
120 |
+
<td>48.1</td>
|
121 |
+
<td>60.8</td>
|
122 |
+
<td>13.3</td>
|
123 |
+
<td>6.7</td>
|
124 |
+
<td>25.0</td>
|
125 |
+
<td>47.4</td>
|
126 |
+
<td>24.2</td>
|
127 |
+
</tr>
|
128 |
+
<tr>
|
129 |
+
<td>MiMo-VL</td>
|
130 |
+
<td>7B</td>
|
131 |
+
<td>66.7</td>
|
132 |
+
<td>60.4</td>
|
133 |
+
<td>18.6</td>
|
134 |
+
<td>45.9</td>
|
135 |
+
<td>48.5</td>
|
136 |
+
<td>59.6</td>
|
137 |
+
<td>60.0</td>
|
138 |
+
<td>34.6</td>
|
139 |
+
<td>69.9</td>
|
140 |
+
<td>55.5</td>
|
141 |
+
<td>50.1</td>
|
142 |
+
</tr>
|
143 |
+
<tr>
|
144 |
+
<td>QvQ-72B-Preview</td>
|
145 |
+
<td>72B</td>
|
146 |
+
<td>70.3</td>
|
147 |
+
<td>35.9</td>
|
148 |
+
<td>15.9</td>
|
149 |
+
<td>30.7</td>
|
150 |
+
<td>40.3</td>
|
151 |
+
<td>50.8</td>
|
152 |
+
<td>22.7</td>
|
153 |
+
<td>49.5</td>
|
154 |
+
<td>47.3</td>
|
155 |
+
<td>10.9</td>
|
156 |
+
<td>24.1</td>
|
157 |
+
</tr>
|
158 |
+
<tr>
|
159 |
+
<td>LLaMA-Maverick</td>
|
160 |
+
<td>400B</td>
|
161 |
+
<td>73.4</td>
|
162 |
+
<td>47.2</td>
|
163 |
+
<td>22.8</td>
|
164 |
+
<td>47.1</td>
|
165 |
+
<td>45.4</td>
|
166 |
+
<td>57.1</td>
|
167 |
+
<td>19.2</td>
|
168 |
+
<td>8.91</td>
|
169 |
+
<td>41.6</td>
|
170 |
+
<td>69.8</td>
|
171 |
+
<td>33.9</td>
|
172 |
+
</tr>
|
173 |
+
<tr>
|
174 |
+
<td rowspan="4">Open-Source LLM</td>
|
175 |
+
<td>MiniMax-M1-80k</td>
|
176 |
+
<td>456B</td>
|
177 |
+
<td>-</td>
|
178 |
+
<td>-</td>
|
179 |
+
<td>-</td>
|
180 |
+
<td>-</td>
|
181 |
+
<td>-</td>
|
182 |
+
<td>-</td>
|
183 |
+
<td>76.9</td>
|
184 |
+
<td>-</td>
|
185 |
+
<td>-</td>
|
186 |
+
<td>70.0</td>
|
187 |
+
<td>65.0</td>
|
188 |
+
</tr>
|
189 |
+
<tr>
|
190 |
+
<td>Qwen3-235B-A22B-Thinking</td>
|
191 |
+
<td>235B</td>
|
192 |
+
<td>-</td>
|
193 |
+
<td>-</td>
|
194 |
+
<td>-</td>
|
195 |
+
<td>-</td>
|
196 |
+
<td>-</td>
|
197 |
+
<td>-</td>
|
198 |
+
<td>81.5</td>
|
199 |
+
<td>62.5</td>
|
200 |
+
<td>-</td>
|
201 |
+
<td>71.1</td>
|
202 |
+
<td>65.9</td>
|
203 |
+
</tr>
|
204 |
+
<tr>
|
205 |
+
<td>DeepSeek R1-0528</td>
|
206 |
+
<td>671B</td>
|
207 |
+
<td>-</td>
|
208 |
+
<td>-</td>
|
209 |
+
<td>-</td>
|
210 |
+
<td>-</td>
|
211 |
+
<td>-</td>
|
212 |
+
<td>-</td>
|
213 |
+
<td>87.5</td>
|
214 |
+
<td>79.4</td>
|
215 |
+
<td>86.9</td>
|
216 |
+
<td>81.0</td>
|
217 |
+
<td>73.3</td>
|
218 |
+
</tr>
|
219 |
+
<tr>
|
220 |
+
<td>Qwen3-235B-A22B-Thinking-2507</td>
|
221 |
+
<td>235B</td>
|
222 |
+
<td>-</td>
|
223 |
+
<td>-</td>
|
224 |
+
<td>-</td>
|
225 |
+
<td>-</td>
|
226 |
+
<td>-</td>
|
227 |
+
<td>-</td>
|
228 |
+
<td>92.3</td>
|
229 |
+
<td>83.9</td>
|
230 |
+
<td>-</td>
|
231 |
+
<td>81.1</td>
|
232 |
+
<td>-</td>
|
233 |
+
</tr>
|
234 |
+
<tr>
|
235 |
+
<td rowspan="6">Proprietary VLM</td>
|
236 |
+
<td>O3</td>
|
237 |
+
<td>-</td>
|
238 |
+
<td>82.9</td>
|
239 |
+
<td>72.8</td>
|
240 |
+
<td>25.2</td>
|
241 |
+
<td>58.1</td>
|
242 |
+
<td>59.8</td>
|
243 |
+
<td>60.1</td>
|
244 |
+
<td>88.9</td>
|
245 |
+
<td>70.1</td>
|
246 |
+
<td>86.7</td>
|
247 |
+
<td>83.3</td>
|
248 |
+
<td>75.8</td>
|
249 |
+
</tr>
|
250 |
+
<tr>
|
251 |
+
<td>Claude4 Sonnet (thinking)</td>
|
252 |
+
<td>-</td>
|
253 |
+
<td>76.9</td>
|
254 |
+
<td>64.6</td>
|
255 |
+
<td>26.1</td>
|
256 |
+
<td>48.1</td>
|
257 |
+
<td>43.7</td>
|
258 |
+
<td>57.0</td>
|
259 |
+
<td>70.5</td>
|
260 |
+
<td>-</td>
|
261 |
+
<td>-</td>
|
262 |
+
<td>75.4</td>
|
263 |
+
<td>55.9</td>
|
264 |
+
</tr>
|
265 |
+
<tr>
|
266 |
+
<td>Claude4 opus (thinking)</td>
|
267 |
+
<td>-</td>
|
268 |
+
<td>79.8</td>
|
269 |
+
<td>66.1</td>
|
270 |
+
<td>25.2</td>
|
271 |
+
<td>49.3</td>
|
272 |
+
<td>47.2</td>
|
273 |
+
<td>59.9</td>
|
274 |
+
<td>75.5</td>
|
275 |
+
<td>-</td>
|
276 |
+
<td>-</td>
|
277 |
+
<td>79.6</td>
|
278 |
+
<td>56.6</td>
|
279 |
+
</tr>
|
280 |
+
<tr>
|
281 |
+
<td>Gemini 2.5 Flash (thinking)</td>
|
282 |
+
<td>-</td>
|
283 |
+
<td>73.2</td>
|
284 |
+
<td>57.3</td>
|
285 |
+
<td>20.1</td>
|
286 |
+
<td>57.1</td>
|
287 |
+
<td>61.1</td>
|
288 |
+
<td>65.2</td>
|
289 |
+
<td>72.0</td>
|
290 |
+
<td>-</td>
|
291 |
+
<td>-</td>
|
292 |
+
<td>82.8</td>
|
293 |
+
<td>61.9</td>
|
294 |
+
</tr>
|
295 |
+
<tr>
|
296 |
+
<td>Gemini 2.5 Pro</td>
|
297 |
+
<td>-</td>
|
298 |
+
<td>81.7</td>
|
299 |
+
<td>73.3</td>
|
300 |
+
<td>30.8</td>
|
301 |
+
<td>56.3</td>
|
302 |
+
<td>66.8</td>
|
303 |
+
<td>66.8</td>
|
304 |
+
<td>88.0</td>
|
305 |
+
<td>-</td>
|
306 |
+
<td>-</td>
|
307 |
+
<td>86.4</td>
|
308 |
+
<td>71.8</td>
|
309 |
+
</tr>
|
310 |
+
<!-- 新增 Grok 4 -->
|
311 |
+
<tr>
|
312 |
+
<td>Grok 4</td>
|
313 |
+
<td>-</td>
|
314 |
+
<td>80.9</td>
|
315 |
+
<td>70.3</td>
|
316 |
+
<td>22.5</td>
|
317 |
+
<td>40.7</td>
|
318 |
+
<td>55.9</td>
|
319 |
+
<td>64.8</td>
|
320 |
+
<td>98.8</td>
|
321 |
+
<td>93.9</td>
|
322 |
+
<td>85.5</td>
|
323 |
+
<td>87.5</td>
|
324 |
+
<td>79.3</td>
|
325 |
+
</tr>
|
326 |
+
</tbody>
|
327 |
+
</table>
|
328 |
+
|
329 |
+
Note: Parts of the evaluation results are reproduced using the same settings.
|
330 |
+
†: Evaluation results of Gemini 2.5 Flash (thinking) may be lower than real model performance, especially on MathVision, due to insufficient instruction following ability.
|
331 |
+
## Deployment
|
332 |
+
|
333 |
+
|
334 |
+
> You can access Step3's API on https://platform.stepfun.com/ , we provide OpenAI/Anthropic-compatible API for you.
|
335 |
+
>
|
336 |
+
|
337 |
+
|
338 |
+
### Inference with Hugging Face Transformers
|
339 |
+
|
340 |
+
We introduce how to use our model at inference stage using transformers library. It is recommended to use python=3.10, torch>=2.1.0, and transformers=4.54.0 as the development environment.We currently only support bf16 inference, and multi-patch is supported by default. This behavior is aligned with vllm and sglang.
|
341 |
+
|
342 |
+
|
343 |
+
```python
|
344 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
345 |
+
|
346 |
+
key_mapping = {
|
347 |
+
"^vision_model": "model.vision_model",
|
348 |
+
r"^model(?!\.(language_model|vision_model))": "model.language_model",
|
349 |
+
"vit_downsampler": "model.vit_downsampler",
|
350 |
+
"vit_downsampler2": "model.vit_downsampler2",
|
351 |
+
"vit_large_projector": "model.vit_large_projector",
|
352 |
+
}
|
353 |
+
|
354 |
+
model_path = "stepfun-ai/step3"
|
355 |
+
|
356 |
+
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
357 |
+
model = AutoModelForCausalLM.from_pretrained(model_path,
|
358 |
+
device_map="auto", torch_dtype="auto",trust_remote_code=True,
|
359 |
+
key_mapping=key_mapping)
|
360 |
+
|
361 |
+
messages = [
|
362 |
+
{
|
363 |
+
"role": "user",
|
364 |
+
"content": [
|
365 |
+
{"type": "image", "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"},
|
366 |
+
{"type": "text", "text": "What's in this picture?"}
|
367 |
+
]
|
368 |
+
},
|
369 |
+
]
|
370 |
+
|
371 |
+
inputs = processor.apply_chat_template(
|
372 |
+
messages, add_generation_prompt=True, tokenize=True,
|
373 |
+
return_dict=True, return_tensors="pt"
|
374 |
+
).to(model.device)
|
375 |
+
|
376 |
+
generate_ids = model.generate(**inputs, max_new_tokens=32768, do_sample=False)
|
377 |
+
decoded = processor.decode(generate_ids[0, inputs["input_ids"].shape[-1] :], skip_special_tokens=True)
|
378 |
+
|
379 |
+
print(decoded)
|
380 |
+
|
381 |
+
```
|
382 |
+
|
383 |
+
|
384 |
+
### Inference with vLLM and SGLang
|
385 |
+
|
386 |
+
|
387 |
+
Our model checkpoints are stored in bf16 and block-fp8 format, you can find it on [Huggingface](https://huggingface.co/stepfun-ai/step3).
|
388 |
+
|
389 |
+
Currently, it is recommended to run Step3 on the following inference engines:
|
390 |
+
|
391 |
+
* vLLM
|
392 |
+
* SGLang
|
393 |
+
|
394 |
+
Deployment and Request examples for vLLM and SGLang can be found in the [Model Deployment Guide](docs/deploy_guidance.md).
|
395 |
+
|
396 |
+
## Contact Us
|
397 |
+
If you have any questions, please reach out at [contact@stepfun.com](mailto:contact@stepfun.com) .
|
398 |
+
|
399 |
+
## License
|
400 |
+
Both the code repository and the model weights are released under the [Apache License (Version 2.0)](./LICENSE).
|
401 |
+
|
402 |
+
## Citation
|
403 |
+
```
|
404 |
+
@misc{step3system,
|
405 |
+
title={Step-3 is Large yet Affordable: Model-system Co-design for Cost-effective Decoding},
|
406 |
+
author={StepFun Team},
|
407 |
+
year={2025},
|
408 |
+
eprint={2507.19427},
|
409 |
+
archivePrefix={arXiv},
|
410 |
+
primaryClass={cs.LG},
|
411 |
+
url={https://arxiv.org/abs/2507.19427},
|
412 |
+
}
|
413 |
+
|
414 |
+
@misc{step3blog,
|
415 |
+
title={Step3: Cost-Effective Multimodal Intelligence},
|
416 |
+
author={StepFun Team},
|
417 |
+
url={https://stepfun.ai/research/step3},
|
418 |
+
}
|
419 |
+
```
|