Spaces:
Running
Running
File size: 7,662 Bytes
67199da 26295fb 67199da 445847a 67199da 26295fb 67199da 445847a 67199da 445847a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import copy
import re
import time
import html
from openai import OpenAI
import gradio as gr
stop_generation = False
def stream_from_vllm(messages, thinking_enabled=True, temperature=1.0):
global stop_generation
client = OpenAI()
response = client.chat.completions.create(
model="glm-4.5",
messages=messages,
temperature=temperature,
stream=True,
max_tokens=32000,
extra_body={
"thinking":
{
"type": "enabled" if thinking_enabled else "disabled",
}
}
)
print(response)
for chunk in response:
if stop_generation:
break
if chunk.choices and chunk.choices[0].delta:
delta = chunk.choices[0].delta
yield delta
class GLM45Model:
def _strip_html(self, text: str) -> str:
return re.sub(r"<[^>]+>", "", text).strip()
def _wrap_text(self, text: str):
return [{"type": "text", "text": text}]
def _stream_fragment(self, reasoning_content: str = "", content: str = "", skip_think: bool = False):
think_html = ""
if reasoning_content and not skip_think:
think_content = html.escape(reasoning_content).replace("\n", "<br>")
think_html = (
"<details open><summary style='cursor:pointer;font-weight:bold;color:#007acc;'>💭 Thinking</summary>"
"<div style='color:#555555;line-height:1.6;padding:15px;border-left:4px solid #007acc;margin:10px 0;background-color:#f0f7ff;border-radius:4px;'>"
+ think_content
+ "</div></details>"
)
answer_html = ""
if content:
content_escaped = html.escape(content)
content_formatted = content_escaped.replace("\n", "<br>")
answer_html = f"<div style='margin:0.5em 0; white-space: pre-wrap; line-height:1.6;'>{content_formatted}</div>"
return think_html + answer_html
def _build_messages(self, raw_hist, sys_prompt):
msgs = []
if sys_prompt.strip():
msgs.append({"role": "system", "content": [{"type": "text", "text": sys_prompt.strip()}]})
for h in raw_hist:
if h["role"] == "user":
msgs.append({"role": "user", "content": self._wrap_text(h["content"])})
else:
raw = re.sub(r"<details.*?</details>", "", h["content"], flags=re.DOTALL)
clean_content = self._strip_html(raw).strip()
if clean_content:
msgs.append({"role": "assistant", "content": self._wrap_text(clean_content)})
return msgs
def stream_generate(self, raw_hist, sys_prompt: str, thinking_enabled: bool = True, temperature: float = 1.0):
global stop_generation
stop_generation = False
msgs = self._build_messages(raw_hist, sys_prompt)
reasoning_buffer = ""
content_buffer = ""
try:
for delta in stream_from_vllm(msgs, thinking_enabled, temperature):
if stop_generation:
break
if hasattr(delta, 'reasoning_content') and delta.reasoning_content:
reasoning_buffer += delta.reasoning_content
elif hasattr(delta, 'content') and delta.content:
content_buffer += delta.content
else:
if isinstance(delta, dict):
if 'reasoning_content' in delta and delta['reasoning_content']:
reasoning_buffer += delta['reasoning_content']
if 'content' in delta and delta['content']:
content_buffer += delta['content']
elif hasattr(delta, 'content') and delta.content:
content_buffer += delta.content
yield self._stream_fragment(reasoning_buffer, content_buffer, not thinking_enabled)
except Exception as e:
error_msg = f"Error during streaming: {str(e)}"
yield self._stream_fragment("", error_msg)
glm45 = GLM45Model()
def chat(msg, raw_hist, sys_prompt, thinking_enabled, temperature):
global stop_generation
stop_generation = False
if not msg.strip():
return raw_hist, copy.deepcopy(raw_hist), ""
user_rec = {"role": "user", "content": msg.strip()}
if raw_hist is None:
raw_hist = []
raw_hist.append(user_rec)
place = {"role": "assistant", "content": ""}
raw_hist.append(place)
yield raw_hist, copy.deepcopy(raw_hist), ""
try:
for chunk in glm45.stream_generate(raw_hist[:-1], sys_prompt, thinking_enabled, temperature):
if stop_generation:
break
place["content"] = chunk
yield raw_hist, copy.deepcopy(raw_hist), ""
except Exception as e:
error_content = f"<div style='color: red;'>Error: {html.escape(str(e))}</div>"
place["content"] = error_content
yield raw_hist, copy.deepcopy(raw_hist), ""
yield raw_hist, copy.deepcopy(raw_hist), ""
def reset():
global stop_generation
stop_generation = True
time.sleep(0.1)
return [], [], ""
demo = gr.Blocks(title="GLM-4.5 API Space", theme=gr.themes.Soft())
with demo:
gr.HTML(
"<div style='text-align:center;font-size:32px;font-weight:bold;margin-bottom:10px;'>GLM-4.5 API Space</div>"
"<div style='text-align:center;color:red;font-size:16px;margin-bottom:20px;'>"
"This space uses the API version of the service for faster response.<br>"
"Chat only. For tool use, MCP support, and web search, please refer to the API.</div>"
"<div style='text-align:center;'><a href='https://huggingface.co/THUDM/GLM-4.5'>Model Hub</a> | "
"<a href='https://github.com/THUDM/GLM-4.5'>Github</a> | "
"<a href='https://www.bigmodel.cn'>API</a></div>"
)
raw_history = gr.State([])
with gr.Row():
with gr.Column(scale=7):
chatbox = gr.Chatbot(
label="Chat",
type="messages",
height=600,
elem_classes="chatbot-container",
sanitize_html=False,
line_breaks=True
)
textbox = gr.Textbox(label="Message", lines=3)
with gr.Row():
send = gr.Button("Send", variant="primary")
clear = gr.Button("Clear")
with gr.Column(scale=1):
thinking_toggle = gr.Checkbox(label="Enable Thinking", value=True)
gr.HTML(
"<div style='color:red;font-size:12px;margin-top:5px;margin-bottom:15px;'>"
"ON: Enable model thinking.<br>"
"OFF: Not enable model thinking, the model will directly answer the question without reasoning."
"</div>"
)
temperature_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.01,
label="Temperature"
)
sys = gr.Textbox(label="System Prompt", lines=6)
send.click(
chat,
inputs=[textbox, raw_history, sys, thinking_toggle, temperature_slider],
outputs=[chatbox, raw_history, textbox]
)
textbox.submit(
chat,
inputs=[textbox, raw_history, sys, thinking_toggle, temperature_slider],
outputs=[chatbox, raw_history, textbox]
)
clear.click(
reset,
outputs=[chatbox, raw_history, textbox]
)
if __name__ == "__main__":
demo.launch() |