# Install FlashAttention import subprocess subprocess.run( "pip install flash-attn==2.7.4.post1 --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True, ) import base64 from collections import Counter from io import BytesIO import re from PIL import Image, ImageDraw import gradio as gr import spaces import torch from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor from qwen_vl_utils import process_vision_info, smart_resize repo_id = "hal-utokyo/MangaLMM" processor = Qwen2_5_VLProcessor.from_pretrained(repo_id) # pre-load device = "cuda" if torch.cuda.is_available() else "cpu" model = Qwen2_5_VLForConditionalGeneration.from_pretrained( repo_id, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", device_map=device, ) def pil2base64(image: Image.Image) -> str: buffered = BytesIO() image.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode() def bbox2d_to_quad(bbox_2d): xmin, ymin, xmax, ymax = bbox_2d return [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax] def normalize_repeated_symbols(text): text = re.sub(r'([~\~\〜\-\ー]+)', lambda m: m.group(1)[0], text) text = re.sub(r'[~~〜]', '~', text) text = re.sub(r'[-ー]', '-', text) return text def normalize_punctuation(text): conversion_map = { "!": "!", "?": "?", "…": "..." } text = re.sub("|".join(map(re.escape, conversion_map.keys())), lambda m: conversion_map[m.group()], text) text = re.sub(r'[・・.]', '・', text) return text def restore_chouon(text): # hirakana + katakana + kanji # jp_range = r"ぁ-んァ-ン一-龯㐀-䶵" # \u3400-\u4DBF = r"㐀-䶵" # Extended Unicode version: covers Hiragana, Katakana, and a wide range of Kanji (including Extension A) jp_range = r"\u3040-\u309F\u30A0-\u30FF\u3400-\u4DBF\u4E00-\u9FFF" pattern = rf"(?<=[{jp_range}])-(?=[{jp_range}])" return re.sub(pattern, "ー", text) def process_text(text: str) -> str: text = re.sub(r"[\s\u3000]+", "", text) text = normalize_repeated_symbols(text) text = normalize_punctuation(text) text = restore_chouon(text) return text def parse_ocr_text(text: str) -> list[list]: if not text.strip(): return [] # handle escape text = text.replace('\\"', '"') # find \n\t{ ... } blocks blocks = re.findall(r"\n\t\{.*?\}", text, re.DOTALL) # extract OCR text and bounding box ocrs = [] for block in blocks: block = block.strip() # remove \n\t bbox_match = re.search(r'"bbox_2d"\s*:\s*\[([^\]]+)\]', block, flags=re.DOTALL) text_match = re.search( r'"text_content"\s*:\s*"([^"]*)"', block, flags=re.DOTALL ) if bbox_match and text_match: try: bbox_list = [int(x.strip()) for x in bbox_match.group(1).split(",")] content = process_text(text_match.group(1)) quad = bbox2d_to_quad(bbox_list) ocrs.append([content, quad]) except: continue # remove duplicates (sometimes the model generates the same text multiple times) counter = Counter([ocr[0] for ocr in ocrs]) ocrs = [ocr for ocr in ocrs if counter[ocr[0]] < 10] return ocrs @spaces.GPU @torch.inference_mode() def inference_fn( image: Image.Image | None, text: str | None, # progress=gr.Progress(track_tqdm=True), ) -> tuple[str, str, Image.Image | None]: if image is None: gr.Warning("Please upload an image!", duration=10) return "Please upload an image!", "Please upload an image!", None if image.width * image.height > 2116800: gr.Warning("The image size is too large! We resize it to smaller size.", duration=10) resized_height, resized_width = smart_resize( height=image.height, width=image.width, factor=processor.image_processor.patch_size * processor.image_processor.merge_size, min_pixels=processor.image_processor.min_pixels, max_pixels=processor.image_processor.max_pixels, ) image = image.resize((resized_width, resized_height), resample=Image.Resampling.BICUBIC) if text is None or text.strip() == "": # OCR text = "Please perform OCR on this image and output the recognized Japanese text along with its position (grounding)." base64_image = pil2base64(image) messages = [ {"role": "user", "content": [ {"type": "image", "image": f"data:image;base64,{base64_image}"}, {"type": "text", "text": text}, ]}, ] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to(model.device) generated_ids = model.generate(**inputs, max_new_tokens=4096) generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] raw_output = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False, )[0] result_image = image_inputs[0].copy() ocrs = parse_ocr_text(raw_output) if not ocrs: return raw_output, "OCR feature was not performed.", result_image draw = ImageDraw.Draw(result_image) ocr_texts = [] for ocr_text, quad in ocrs: ocr_texts.append(f'{ocr_text} ({quad[0]}, {quad[1]}, {quad[4]}, {quad[5]})') for i in range(4): start_point = quad[i*2:i*2+2] end_point = quad[i*2+2:i*2+4] if i < 3 else quad[:2] draw.line(start_point + end_point, fill="red", width=4) draw.polygon(quad, outline="red", width=4) # draw.text((quad[0], quad[1]), ocr_text, fill="red") ocr_texts_str = "\n".join(ocr_texts) return "No question was entered.", ocr_texts_str, result_image with gr.Blocks() as demo: gr.Markdown("""# MangaLMM Official Demo ![GitHub Repo](https://img.shields.io/badge/repo-manga109%2FMangaLMM-9E95B7?logo=refinedgithub) We propose MangaVQA and MangaLMM, which are a benchmark and a specialized LMM for multimodal manga understanding. This demo uses our [MangaLMM model](https://huggingface.co/hal-utokyo/MangaLMM) to perform OCR on an image of manga panels and answer a question about the image. Please ensure that the image contains fewer than 2116800 pixels. (e.g. 1600x1200, 1920x1080, etc.) If more, we resize it to smaller size. *Note: This model is for research purposes only and may return incorrect results. Please use it at your own risk.* """) with gr.Row(): with gr.Column(): input_button = gr.Button(value="Submit") input_text = gr.Textbox( label="Input Text", lines=5, max_lines=5, placeholder="Please enter a question about your image.\nEmpty text will perform OCR.", ) input_image = gr.Image(label="Input Image", image_mode="RGB", type="pil") with gr.Column(): vqa_text = gr.Textbox(label="VQA Result", lines=2, max_lines=2) ocr_text = gr.Textbox(label="OCR Result", lines=3, max_lines=3) ocr_image = gr.Image(label="OCR Result", type="pil", show_label=False) input_button.click( fn=inference_fn, inputs=[input_image, input_text], outputs=[vqa_text, ocr_text, ocr_image], ) ocr_examples = gr.Examples( examples=[], fn=inference_fn, inputs=[input_image, input_text], outputs=[vqa_text, ocr_text, ocr_image], cache_examples=False, ) demo.queue().launch()