File size: 7,916 Bytes
eb4186d
 
 
f79b053
eb4186d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1518cc6
 
 
 
 
 
 
 
eb4186d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Install FlashAttention
import subprocess
subprocess.run(
    "pip install flash-attn==2.7.4.post1 --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)

import base64
from collections import Counter
from io import BytesIO
import re

from PIL import Image, ImageDraw
import gradio as gr
import spaces
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor
from qwen_vl_utils import process_vision_info, smart_resize


repo_id = "hal-utokyo/MangaLMM"
processor = Qwen2_5_VLProcessor.from_pretrained(repo_id)

# pre-load
device = "cuda" if torch.cuda.is_available() else "cpu"
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    repo_id,
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
    device_map=device,
)

def pil2base64(image: Image.Image) -> str:
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    return base64.b64encode(buffered.getvalue()).decode()


def bbox2d_to_quad(bbox_2d):
    xmin, ymin, xmax, ymax = bbox_2d
    return [xmin, ymin, xmax, ymin, xmax, ymax, xmin, ymax]


def normalize_repeated_symbols(text):
    text = re.sub(r'([~\~\〜\-\ー]+)', lambda m: m.group(1)[0], text)
    text = re.sub(r'[~~〜]', '~', text)
    text = re.sub(r'[-ー]', '-', text)
    return text


def normalize_punctuation(text):
    conversion_map = {
        "!": "!",
        "?": "?",
        "…": "..."
    }
    text = re.sub("|".join(map(re.escape, conversion_map.keys())), lambda m: conversion_map[m.group()], text)
    text = re.sub(r'[・・.]', '・', text)
    return text


def restore_chouon(text):
    # hirakana + katakana + kanji
    # jp_range = r"ぁ-んァ-ン一-龯㐀-䶵"  # \u3400-\u4DBF = r"㐀-䶵"
    # Extended Unicode version: covers Hiragana, Katakana, and a wide range of Kanji (including Extension A)
    jp_range = r"\u3040-\u309F\u30A0-\u30FF\u3400-\u4DBF\u4E00-\u9FFF"
    pattern = rf"(?<=[{jp_range}])-(?=[{jp_range}])"
    return re.sub(pattern, "ー", text)


def process_text(text: str) -> str:
    text = re.sub(r"[\s\u3000]+", "", text)
    text = normalize_repeated_symbols(text)
    text = normalize_punctuation(text)
    text = restore_chouon(text)
    return text


def parse_ocr_text(text: str) -> list[list]:
    if not text.strip():
        return []
    # handle escape
    text = text.replace('\\"', '"')
    # find \n\t{ ... } blocks
    blocks = re.findall(r"\n\t\{.*?\}", text, re.DOTALL)
    # extract OCR text and bounding box
    ocrs = []
    for block in blocks:
        block = block.strip()  # remove \n\t
        bbox_match = re.search(r'"bbox_2d"\s*:\s*\[([^\]]+)\]', block, flags=re.DOTALL)
        text_match = re.search(
            r'"text_content"\s*:\s*"([^"]*)"', block, flags=re.DOTALL
        )

        if bbox_match and text_match:
            try:
                bbox_list = [int(x.strip()) for x in bbox_match.group(1).split(",")]
                content = process_text(text_match.group(1))
                quad = bbox2d_to_quad(bbox_list)
                ocrs.append([content, quad])
            except:
                continue
    # remove duplicates (sometimes the model generates the same text multiple times)
    counter = Counter([ocr[0] for ocr in ocrs])
    ocrs = [ocr for ocr in ocrs if counter[ocr[0]] < 10]
    return ocrs


@spaces.GPU
@torch.inference_mode()
def inference_fn(
    image: Image.Image | None,
    text: str | None,
    # progress=gr.Progress(track_tqdm=True),
) -> tuple[str, str, Image.Image | None]:
    if image is None:
        gr.Warning("Please upload an image!", duration=10)
        return "Please upload an image!", "Please upload an image!", None
    if image.width * image.height > 2116800:
        gr.Warning("The image size is too large! We resize it to smaller size.", duration=10)
        resized_height, resized_width = smart_resize(
            height=image.height,
            width=image.width,
            factor=processor.image_processor.patch_size * processor.image_processor.merge_size,
            min_pixels=processor.image_processor.min_pixels,
            max_pixels=processor.image_processor.max_pixels,
        )
        image = image.resize((resized_width, resized_height), resample=Image.Resampling.BICUBIC)
    if text is None or text.strip() == "":
        # OCR
        text = "Please perform OCR on this image and output the recognized Japanese text along with its position (grounding)."

    base64_image = pil2base64(image)
    messages = [
        {"role": "user", "content": [
            {"type": "image", "image": f"data:image;base64,{base64_image}"},
            {"type": "text", "text": text},
        ]},
    ]
    text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to(model.device)

    generated_ids = model.generate(**inputs, max_new_tokens=4096)
    generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
    raw_output = processor.batch_decode(
        generated_ids_trimmed,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False,
    )[0]
    result_image = image_inputs[0].copy()

    ocrs = parse_ocr_text(raw_output)
    if not ocrs:
        return raw_output, "OCR feature was not performed.", result_image

    draw = ImageDraw.Draw(result_image)
    ocr_texts = []
    for ocr_text, quad in ocrs:
        ocr_texts.append(f'{ocr_text} ({quad[0]}, {quad[1]}, {quad[4]}, {quad[5]})')
        for i in range(4):
            start_point = quad[i*2:i*2+2]
            end_point = quad[i*2+2:i*2+4] if i < 3 else quad[:2]
            draw.line(start_point + end_point, fill="red", width=4)
        draw.polygon(quad, outline="red", width=4)
        # draw.text((quad[0], quad[1]), ocr_text, fill="red")
    ocr_texts_str = "\n".join(ocr_texts)
    return "No question was entered.", ocr_texts_str, result_image


with gr.Blocks() as demo:
    gr.Markdown("""# MangaLMM Official Demo

![GitHub Repo](https://img.shields.io/badge/repo-manga109%2FMangaLMM-9E95B7?logo=refinedgithub)

We propose MangaVQA and MangaLMM, which are a benchmark and a specialized LMM for multimodal manga understanding.

This demo uses our [MangaLMM model](https://huggingface.co/hal-utokyo/MangaLMM) to perform OCR on an image of manga panels and answer a question about the image.

Please ensure that the image contains fewer than 2116800 pixels. (e.g. 1600x1200, 1920x1080, etc.) If more, we resize it to smaller size.

*Note: This model is for research purposes only and may return incorrect results. Please use it at your own risk.*
""")
    with gr.Row():
        with gr.Column():
            input_button = gr.Button(value="Submit")
            input_text = gr.Textbox(
                label="Input Text", lines=5, max_lines=5,
                placeholder="Please enter a question about your image.\nEmpty text will perform OCR.",
            )
            input_image = gr.Image(label="Input Image", image_mode="RGB", type="pil")
        with gr.Column():
            vqa_text = gr.Textbox(label="VQA Result", lines=2, max_lines=2)
            ocr_text = gr.Textbox(label="OCR Result", lines=3, max_lines=3)
            ocr_image = gr.Image(label="OCR Result", type="pil", show_label=False)

    input_button.click(
        fn=inference_fn,
        inputs=[input_image, input_text],
        outputs=[vqa_text, ocr_text, ocr_image],
    )
    ocr_examples = gr.Examples(
        examples=[],
        fn=inference_fn,
        inputs=[input_image, input_text],
        outputs=[vqa_text, ocr_text, ocr_image],
        cache_examples=False,
    )

demo.queue().launch()