File size: 3,893 Bytes
3a81605
513e1fb
 
 
3a81605
513e1fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a81605
 
 
513e1fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a81605
 
 
 
513e1fb
3a81605
513e1fb
 
 
3a81605
 
513e1fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import cv2
import torch as th
import os
import numpy as np
from decord import VideoReader, cpu


class Normalize(object):
    def __init__(self, mean, std):
        self.mean = th.FloatTensor(mean).view(1, 3, 1, 1)
        self.std = th.FloatTensor(std).view(1, 3, 1, 1)

    def __call__(self, tensor):
        tensor = (tensor - self.mean) / (self.std + 1e-8)
        return tensor


class Preprocessing(object):
    def __init__(self):
        self.norm = Normalize(
            mean=[0.48145466, 0.4578275, 0.40821073],
            std=[0.26862954, 0.26130258, 0.27577711],
        )

    def __call__(self, tensor):
        tensor = tensor / 255.0
        tensor = self.norm(tensor)
        return tensor


class VideoLoader:
    """Pytorch video loader."""

    def __init__(
        self,
        framerate=1,
        size=224,
        centercrop=True,
    ):
        self.centercrop = centercrop
        self.size = size
        self.framerate = framerate
        self.preprocess = Preprocessing()
        self.max_feats = 10
        self.features_dim = 768

    def _get_video_dim(self, video_path):
        vr = VideoReader(video_path, ctx=cpu(0))
        height, width, _ = vr[0].shape
        frame_rate = vr.get_avg_fps()
        return height, width, frame_rate

    def _get_output_dim(self, h, w):
        if isinstance(self.size, tuple) and len(self.size) == 2:
            return self.size
        elif h >= w:
            return int(h * self.size / w), self.size
        else:
            return self.size, int(w * self.size / h)

    def _getvideo(self, video_path):
        
        if os.path.isfile(video_path):
            print("Decoding video: {}".format(video_path))
            try:
                h, w, fr = self._get_video_dim(video_path)
            except:
                print("ffprobe failed at: {}".format(video_path))
                return {
                    "video": th.zeros(1),
                    "input": video_path
                }
            if fr < 1:
                print("Corrupted Frame Rate: {}".format(video_path))
                return {
                    "video": th.zeros(1),
                    "input": video_path
                }
            height, width = self._get_output_dim(h, w)
            # resize ##
            vr = VideoReader(video_path, ctx=cpu(0))
            video = vr.get_batch(range(0, len(vr), int(fr))).asnumpy()
            video = np.array([cv2.resize(frame, (width, height)) for frame in video])
            try:

                if self.centercrop:
                    x = int((width - self.size) / 2.0)
                    y = int((height - self.size) / 2.0)
                    video = video[:, y:y+self.size, x:x+self.size, :]

            except:
                print("ffmpeg error at: {}".format(video_path))
                return {
                    "video": th.zeros(1),
                    "input": video_path,
                }
            if self.centercrop and isinstance(self.size, int):
                height, width = self.size, self.size
            video = th.from_numpy(video.astype("float32"))
            video = video.permute(0, 3, 1, 2) # t,c,h,w
        else:
            video = th.zeros(1)

        return {"video": video, "input": video_path}

    def __call__(self, video_path):

        video = self._getvideo(video_path)['video']

        if len(video) > self.max_feats:
            sampled = []
            for j in range(self.max_feats):
                sampled.append(video[(j * len(video)) // self.max_feats])
            video = th.stack(sampled)
            video_len = self.max_feats
        elif len(video) < self.max_feats:
            video_len = len(video)
            video = th.cat(
                [video, th.zeros(self.max_feats - video_len, self.features_dim)], 0
            )
        video = self.preprocess(video)
        return video, video_len