File size: 41,444 Bytes
f5b302e 36fcf07 6d19e58 36fcf07 f5b302e 6d19e58 fa1bef5 36fcf07 6d19e58 fa1bef5 f5b302e deb6f27 6d19e58 36fcf07 deb6f27 f5b302e fa1bef5 f5b302e deb6f27 b5cc3fd deb6f27 f5b302e c8d94c7 f5b302e c8d94c7 f5b302e b5cc3fd f5b302e b5cc3fd deb6f27 f5b302e deb6f27 f5b302e b5cc3fd f5b302e deb6f27 759b2cf fa1bef5 759b2cf fa1bef5 6d19e58 fa1bef5 759b2cf 36fcf07 6d19e58 36fcf07 6d19e58 36fcf07 fa1bef5 36fcf07 fa1bef5 c8d94c7 759b2cf fa1bef5 f5b302e deb6f27 fa1bef5 c8d94c7 deb6f27 759b2cf f5b302e deb6f27 f5b302e fa1bef5 759b2cf fa1bef5 f5b302e deb6f27 c8d94c7 deb6f27 c8d94c7 deb6f27 36fcf07 deb6f27 c8d94c7 deb6f27 759b2cf 36fcf07 deb6f27 36fcf07 deb6f27 36fcf07 f5b302e c8d94c7 f5b302e deb6f27 c8d94c7 deb6f27 759b2cf deb6f27 fa1bef5 36fcf07 fa1bef5 759b2cf 36fcf07 fa1bef5 deb6f27 36fcf07 deb6f27 f5b302e c8d94c7 deb6f27 c8d94c7 deb6f27 f5b302e deb6f27 c8d94c7 deb6f27 d7faddc 759b2cf d7faddc 36fcf07 deb6f27 f5b302e deb6f27 f5b302e b5cc3fd f5b302e c8d94c7 deb6f27 f5b302e deb6f27 d8b372b deb6f27 f5b302e deb6f27 f5b302e deb6f27 daa76db deb6f27 f5b302e deb6f27 f5b302e daa76db deb6f27 f5b302e c8d94c7 f5b302e c8d94c7 f5b302e c8d94c7 f5b302e c8d94c7 f5b302e deb6f27 c8d94c7 deb6f27 c8d94c7 deb6f27 c8d94c7 f5b302e c8d94c7 fa1bef5 6d19e58 fa1bef5 6d19e58 fa1bef5 f5b302e daa76db f5b302e fa1bef5 f5b302e deb6f27 f5b302e b5cc3fd f5b302e deb6f27 d7faddc f5b302e b5cc3fd f5b302e deb6f27 b5cc3fd deb6f27 b5cc3fd deb6f27 fa1bef5 deb6f27 f5b302e deb6f27 f5b302e b5cc3fd f5b302e fa1bef5 deb6f27 f5b302e fa1bef5 c8d94c7 fa1bef5 f5b302e c8d94c7 7b20b20 f5b302e b5cc3fd f5b302e 36fcf07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 |
import gradio as gr
import whisper
import random
import time
import os
import subprocess
import warnings
# Set environment variable to avoid tokenizer warnings
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from utils import SocialGraphManager
from llm_interface import LLMInterface
# Define available models - using only the ones specified by the user
AVAILABLE_MODELS = {
# Gemini models (online API)
"gemini-1.5-flash-8b-latest": "π Gemini 1.5 Flash 8B (Online API - Fast, Cheapest)",
"gemini-2.0-flash": "π Gemini 2.0 Flash (Online API - Better quality)",
"gemma-3-27b-it": "π Gemma 3 27B-IT (Online API - High quality)",
}
# Initialize the social graph manager
social_graph = SocialGraphManager("social_graph.json")
# Check if we're running on Hugging Face Spaces
is_huggingface_spaces = "SPACE_ID" in os.environ
# Print environment info for debugging
print(f"Running on Hugging Face Spaces: {is_huggingface_spaces}")
print(f"GEMINI_API_KEY set: {'Yes' if os.environ.get('GEMINI_API_KEY') else 'No'}")
print(f"HF_TOKEN set: {'Yes' if os.environ.get('HF_TOKEN') else 'No'}")
# Try to run the setup script if we're on Hugging Face Spaces
if is_huggingface_spaces:
try:
print("Running setup script...")
subprocess.run(["bash", "setup.sh"], check=True)
print("Setup script completed successfully")
except Exception as e:
print(f"Error running setup script: {e}")
# Check if LLM tool is installed
llm_installed = False
try:
result = subprocess.run(
["llm", "--version"],
capture_output=True,
text=True,
timeout=5,
)
if result.returncode == 0:
print(f"LLM tool is installed: {result.stdout.strip()}")
llm_installed = True
else:
print("LLM tool returned an error.")
except Exception as e:
print(f"LLM tool not available: {e}")
# Initialize the suggestion generator
if llm_installed:
print("Initializing with Gemini 1.5 Flash 8B (online model via LLM tool)")
suggestion_generator = LLMInterface("gemini-1.5-flash-8b-latest")
use_llm_interface = True
else:
print("LLM tool not available, falling back to direct Hugging Face implementation")
from utils import SuggestionGenerator
suggestion_generator = SuggestionGenerator("google/gemma-3-1b-it")
use_llm_interface = False
# Test the model to make sure it's working
print("Testing model connection...")
test_result = suggestion_generator.test_model()
print(f"Model test result: {test_result}")
# If the model didn't load, try Ollama as fallback
if not suggestion_generator.model_loaded:
print("Online model not available, trying Ollama model...")
suggestion_generator = LLMInterface("ollama/gemma:7b")
test_result = suggestion_generator.test_model()
print(f"Ollama model test result: {test_result}")
# If Ollama also fails, try OpenAI as fallback
if not suggestion_generator.model_loaded:
print("Ollama not available, trying OpenAI model...")
suggestion_generator = LLMInterface("gpt-3.5-turbo")
test_result = suggestion_generator.test_model()
print(f"OpenAI model test result: {test_result}")
# Test the model to make sure it's working
test_result = suggestion_generator.test_model()
print(f"Model test result: {test_result}")
# If the model didn't load, use the fallback responses
if not suggestion_generator.model_loaded:
print("Model failed to load, using fallback responses...")
# The SuggestionGenerator class has built-in fallback responses
# Initialize Whisper model (using the smallest model for speed)
try:
whisper_model = whisper.load_model("tiny")
whisper_loaded = True
except Exception as e:
print(f"Error loading Whisper model: {e}")
whisper_loaded = False
def format_person_display(person):
"""Format person information for display in the dropdown."""
return f"{person['name']} ({person['role']})"
def get_people_choices():
"""Get formatted choices for the people dropdown."""
people = social_graph.get_people_list()
choices = {}
for person in people:
display_name = format_person_display(person)
person_id = person["id"]
choices[display_name] = person_id
# Debug the choices
print(f"People choices: {choices}")
return choices
def get_topics_for_person(person_id):
"""Get topics for a specific person."""
if not person_id:
return []
person_context = social_graph.get_person_context(person_id)
topics = person_context.get("topics", [])
return topics
def get_suggestion_categories():
"""Get suggestion categories from the social graph with emoji prefixes."""
if "common_utterances" in social_graph.graph:
categories = list(social_graph.graph["common_utterances"].keys())
emoji_map = {
"greetings": "π greetings",
"needs": "π needs",
"emotions": "π emotions",
"questions": "β questions",
"tech_talk": "π» tech_talk",
"reminiscing": "π reminiscing",
"organization": "π
organization",
}
return [emoji_map.get(cat, cat) for cat in categories]
return []
def on_person_change(person_id):
"""Handle person selection change."""
if not person_id:
return "", "", [], ""
# Get the people choices dictionary
people_choices = get_people_choices()
# Extract the actual ID if it's in the format "Name (role)"
actual_person_id = person_id
if person_id in people_choices:
# If the person_id is a display name, get the actual ID
actual_person_id = people_choices[person_id]
print(f"on_person_change: Extracted actual person ID: {actual_person_id}")
person_context = social_graph.get_person_context(actual_person_id)
# Create a more user-friendly context display
name = person_context.get("name", "")
role = person_context.get("role", "")
frequency = person_context.get("frequency", "")
context_text = person_context.get("context", "")
context_info = f"""### I'm talking to: {name}
**Relationship:** {role}
**How often we talk:** {frequency}
**Our relationship:** {context_text}
"""
# Get common phrases for this person
phrases = person_context.get("common_phrases", [])
phrases_text = "\n\n".join(phrases)
# Get topics for this person
topics = person_context.get("topics", [])
# Get conversation history for this person
conversation_history = person_context.get("conversation_history", [])
history_text = ""
if conversation_history:
# Sort by timestamp (most recent first)
sorted_history = sorted(
conversation_history, key=lambda x: x.get("timestamp", ""), reverse=True
)[
:2
] # Get only the 2 most recent conversations
history_text = "### Recent Conversations:\n\n"
for i, conversation in enumerate(sorted_history):
# Format the timestamp
timestamp = conversation.get("timestamp", "")
try:
import datetime
dt = datetime.datetime.fromisoformat(timestamp)
formatted_date = dt.strftime("%B %d, %Y at %I:%M %p")
except (ValueError, TypeError):
formatted_date = timestamp
history_text += f"**Conversation on {formatted_date}:**\n\n"
# Add the messages
messages = conversation.get("messages", [])
for message in messages:
speaker = message.get("speaker", "Unknown")
text = message.get("text", "")
history_text += f"*{speaker}*: {text}\n\n"
# Add a separator between conversations
if i < len(sorted_history) - 1:
history_text += "---\n\n"
return context_info, phrases_text, topics, history_text
def change_model(model_name, progress=gr.Progress()):
"""Change the language model used for generation.
Args:
model_name: The name of the model to use
progress: Gradio progress indicator
Returns:
A status message about the model change
"""
global suggestion_generator, use_llm_interface
print(f"Changing model to: {model_name}")
# Check if we need to change the model
if model_name == suggestion_generator.model_name:
return f"Already using model: {model_name}"
# Show progress indicator
progress(0, desc=f"Loading model: {model_name}")
try:
progress(0.3, desc=f"Initializing {model_name}...")
# Use the appropriate interface based on what's available
if use_llm_interface:
# Create a new LLMInterface with the selected model
new_generator = LLMInterface(model_name)
# Test if the model works
progress(0.6, desc="Testing model connection...")
test_result = new_generator.test_model()
print(f"Model test result: {test_result}")
if new_generator.model_loaded:
# Replace the current generator with the new one
suggestion_generator = new_generator
progress(1.0, desc=f"Model loaded: {model_name}")
return f"Successfully switched to model: {model_name}"
else:
progress(1.0, desc="Model loading failed")
return (
f"Failed to load model: {model_name}. Using previous model instead."
)
else:
# Using direct Hugging Face implementation
from utils import SuggestionGenerator
# Create a new SuggestionGenerator with the selected model
new_generator = SuggestionGenerator(model_name)
# Test if the model works
progress(0.6, desc="Testing model connection...")
success = new_generator.load_model(model_name)
if success:
# Replace the current generator with the new one
suggestion_generator = new_generator
progress(1.0, desc=f"Model loaded: {model_name}")
return f"Successfully switched to model: {model_name}"
else:
progress(1.0, desc="Model loading failed")
return (
f"Failed to load model: {model_name}. Using previous model instead."
)
except Exception as e:
print(f"Error changing model: {e}")
progress(1.0, desc="Error loading model")
return f"Error loading model: {model_name}. Using previous model instead."
def generate_suggestions(
person_id,
user_input,
suggestion_type,
selected_topic=None,
model_name="gemini-1.5-flash",
temperature=0.7,
mood=3,
progress=gr.Progress(),
):
"""Generate suggestions based on the selected person and user input."""
print(
f"Generating suggestions with: person_id={person_id}, user_input={user_input}, "
f"suggestion_type={suggestion_type}, selected_topic={selected_topic}, "
f"model={model_name}, temperature={temperature}, mood={mood}"
)
# Initialize progress
progress(0, desc="Starting...")
if not person_id:
print("No person_id provided")
return "Please select who you're talking to first."
# Make sure we're using the right model
if model_name != suggestion_generator.model_name:
progress(0.1, desc=f"Switching to model: {model_name}")
change_model(model_name, progress)
person_context = social_graph.get_person_context(person_id)
print(f"Person context: {person_context}")
# Remove emoji prefix from suggestion_type if present
clean_suggestion_type = suggestion_type
if suggestion_type.startswith(
("π€", "π", "π¬", "π", "π", "π", "β", "π»", "π", "π
")
):
clean_suggestion_type = suggestion_type[2:].strip() # Remove emoji and space
# Try to infer conversation type if user input is provided
inferred_category = None
if user_input and clean_suggestion_type == "auto_detect":
# Simple keyword matching for now - could be enhanced with ML
user_input_lower = user_input.lower()
if any(
word in user_input_lower
for word in ["hi", "hello", "morning", "afternoon", "evening"]
):
inferred_category = "greetings"
elif any(
word in user_input_lower
for word in ["feel", "tired", "happy", "sad", "frustrated"]
):
inferred_category = "emotions"
elif any(
word in user_input_lower
for word in ["need", "want", "help", "water", "toilet", "loo"]
):
inferred_category = "needs"
elif any(
word in user_input_lower
for word in ["what", "how", "when", "where", "why", "did"]
):
inferred_category = "questions"
elif any(
word in user_input_lower
for word in ["remember", "used to", "back then", "when we"]
):
inferred_category = "reminiscing"
elif any(
word in user_input_lower
for word in ["code", "program", "software", "app", "tech"]
):
inferred_category = "tech_talk"
elif any(
word in user_input_lower
for word in ["plan", "schedule", "appointment", "tomorrow", "later"]
):
inferred_category = "organization"
# Add topic to context if selected
if selected_topic:
person_context["selected_topic"] = selected_topic
# Add mood to person context
person_context["mood"] = mood
# Format the output with multiple suggestions
result = ""
# If suggestion type is "model", use the language model for multiple suggestions
if clean_suggestion_type == "model":
print("Using model for suggestions")
progress(0.2, desc="Preparing to generate suggestions...")
# Generate suggestions using the LLM interface
try:
# Use the LLM interface to generate multiple suggestions
suggestions = suggestion_generator.generate_multiple_suggestions(
person_context=person_context,
user_input=user_input,
num_suggestions=3,
temperature=temperature,
progress_callback=lambda p, desc: progress(0.2 + (p * 0.7), desc=desc),
)
# Make sure we have at least one suggestion
if not suggestions:
suggestions = ["I'm not sure what to say about that."]
# Make sure we have exactly 3 suggestions (pad with fallbacks if needed)
while len(suggestions) < 3:
suggestions.append("I'm not sure what else to say about that.")
result = f"### AI-Generated Responses (using {suggestion_generator.model_name}):\n\n"
for i, suggestion in enumerate(suggestions, 1):
result += f"{i}. {suggestion}\n\n"
print(f"Final result: {result[:100]}...")
except Exception as e:
print(f"Error generating suggestions: {e}")
result = "### Error generating suggestions:\n\n"
result += "1. I'm having trouble generating responses right now.\n\n"
result += "2. Please try again or select a different model.\n\n"
result += "3. You might want to check your internet connection if using an online model.\n\n"
# Force a complete progress update before returning
progress(0.9, desc="Finalizing suggestions...")
# If suggestion type is "common_phrases", use the person's common phrases
elif clean_suggestion_type == "common_phrases":
phrases = social_graph.get_relevant_phrases(person_id, user_input)
result = "### My Common Phrases with this Person:\n\n"
for i, phrase in enumerate(phrases, 1):
result += f"{i}. {phrase}\n\n"
# If suggestion type is "auto_detect", use the inferred category or default to model
elif clean_suggestion_type == "auto_detect":
print(f"Auto-detect mode, inferred category: {inferred_category}")
if inferred_category:
utterances = social_graph.get_common_utterances(inferred_category)
print(f"Got utterances for category {inferred_category}: {utterances}")
result = f"### Auto-detected category: {inferred_category.replace('_', ' ').title()}\n\n"
for i, utterance in enumerate(utterances, 1):
result += f"{i}. {utterance}\n\n"
else:
print("No category inferred, falling back to model")
# Fall back to model if we couldn't infer a category
progress(0.3, desc="No category detected, using model instead...")
try:
suggestions = []
# Set a timeout for each suggestion generation (10 seconds)
timeout_per_suggestion = 10
for i in range(3):
progress_value = 0.4 + (i * 0.15) # Progress from 40% to 70%
progress(
progress_value, desc=f"Generating fallback suggestion {i+1}/3"
)
try:
# Add mood to person context
person_context["mood"] = mood
# Set a start time for timeout tracking
start_time = time.time()
# Try to generate a suggestion with timeout
suggestion = None
# If model isn't loaded, use fallback immediately
if not suggestion_generator.model_loaded:
print("Model not loaded, using fallback response")
suggestion = random.choice(
suggestion_generator.fallback_responses
)
else:
# Try to generate with the model
suggestion = suggestion_generator.generate_suggestion(
person_context, user_input, temperature=temperature
)
# Check if generation took too long
if time.time() - start_time > timeout_per_suggestion:
print(
f"Fallback suggestion {i+1} generation timed out, using fallback"
)
suggestion = (
"I'm not sure what to say about that right now."
)
# Only add non-empty suggestions
if suggestion and suggestion.strip():
suggestions.append(suggestion.strip())
else:
print("Empty fallback suggestion received, using default")
suggestions.append("I'm not sure what to say about that.")
# Force a progress update after each suggestion
progress(
0.4 + (i * 0.15) + 0.05,
desc=f"Completed fallback suggestion {i+1}/3",
)
except Exception as e:
print(f"Error generating fallback suggestion {i+1}: {e}")
suggestions.append("I'm having trouble responding to that.")
# Force a progress update even after error
progress(
0.4 + (i * 0.15) + 0.05,
desc=f"Error in fallback suggestion {i+1}/3",
)
# Small delay to ensure UI updates
time.sleep(0.2)
# Make sure we have at least one suggestion
if not suggestions:
suggestions = ["I'm not sure what to say about that."]
# Make sure we have exactly 3 suggestions (pad with fallbacks if needed)
while len(suggestions) < 3:
suggestions.append("I'm not sure what else to say about that.")
# Force a progress update
progress(0.85, desc="Finalizing fallback suggestions...")
result = "### AI-Generated Responses (no category detected):\n\n"
for i, suggestion in enumerate(suggestions, 1):
result += f"{i}. {suggestion}\n\n"
except Exception as e:
print(f"Error generating fallback suggestion: {e}")
progress(0.9, desc="Error handling...")
result = "### Could not generate a response:\n\n"
result += "1. Sorry, I couldn't generate a suggestion at this time.\n\n"
# If suggestion type is a category from common_utterances
elif clean_suggestion_type in [
"greetings",
"needs",
"emotions",
"questions",
"tech_talk",
"reminiscing",
"organization",
]:
print(f"Using category: {clean_suggestion_type}")
utterances = social_graph.get_common_utterances(clean_suggestion_type)
print(f"Got utterances: {utterances}")
result = f"### {clean_suggestion_type.replace('_', ' ').title()} Phrases:\n\n"
for i, utterance in enumerate(utterances, 1):
result += f"{i}. {utterance}\n\n"
# Default fallback
else:
print(f"No handler for suggestion type: {clean_suggestion_type}")
result = "No suggestions available. Please try a different option."
print(f"Returning result: {result[:100]}...")
print(f"Result type: {type(result)}")
print(f"Result length: {len(result)}")
# Make sure we're returning a non-empty string
if not result or len(result.strip()) == 0:
result = "No response was generated. Please try again with different settings."
# Always complete the progress to 100% before returning
progress(1.0, desc="Completed!")
# Add a small delay to ensure UI updates properly
time.sleep(0.5)
# Print final status
print("Generation completed successfully, returning result")
return result
def transcribe_audio(audio_path):
"""Transcribe audio using Whisper."""
if not whisper_loaded:
return "Whisper model not loaded. Please check your installation."
try:
# Transcribe the audio
result = whisper_model.transcribe(audio_path)
return result["text"]
except Exception:
return "Could not transcribe audio. Please try again."
def save_conversation(person_id, user_input, selected_response):
"""Save a conversation to the social graph.
Args:
person_id: ID of the person in the conversation
user_input: What the person said to Will
selected_response: Will's response
Returns:
True if successful, False otherwise
"""
print(f"Saving conversation for person_id: {person_id}")
print(f"User input: {user_input}")
print(f"Selected response: {selected_response}")
if not person_id:
print("Error: No person_id provided")
return False
if not (user_input or selected_response):
print("Error: No user input or selected response provided")
return False
# Create message objects
messages = []
# Get the person's name
person_context = social_graph.get_person_context(person_id)
if not person_context:
print(f"Error: Could not get person context for {person_id}")
return False
person_name = person_context.get("name", "Person")
print(f"Person name: {person_name}")
# Add the user's message if provided
if user_input:
messages.append({"speaker": person_name, "text": user_input})
print(f"Added user message: {user_input}")
# Add Will's response
if selected_response:
messages.append({"speaker": "Will", "text": selected_response})
print(f"Added Will's response: {selected_response}")
# Save the conversation
if messages:
print(f"Saving {len(messages)} messages to conversation history")
try:
success = social_graph.add_conversation(person_id, messages)
print(f"Save result: {success}")
if success:
# Manage the conversation history (keep only the most recent ones)
manage_result = manage_conversation_history(person_id)
print(f"Manage conversation history result: {manage_result}")
return success
except Exception as e:
print(f"Error saving conversation: {e}")
return False
else:
print("No messages to save")
return False
def manage_conversation_history(person_id, max_conversations=5):
"""Manage the conversation history for a person.
Args:
person_id: ID of the person
max_conversations: Maximum number of conversations to keep in the social graph
Returns:
True if successful, False otherwise
"""
if not person_id:
return False
# Get the person's conversation history
person_context = social_graph.get_person_context(person_id)
conversation_history = person_context.get("conversation_history", [])
# If we have more than the maximum number of conversations, summarize the oldest ones
if len(conversation_history) > max_conversations:
# Sort by timestamp (oldest first)
sorted_history = sorted(
conversation_history, key=lambda x: x.get("timestamp", "")
)
# Keep the most recent conversations
keep_conversations = sorted_history[-max_conversations:]
# Summarize the older conversations
older_conversations = sorted_history[:-max_conversations]
# Create summaries for the older conversations
summaries = []
for conversation in older_conversations:
summary = social_graph.summarize_conversation(conversation)
summaries.append(
{"timestamp": conversation.get("timestamp", ""), "summary": summary}
)
# Update the person's conversation history
social_graph.graph["people"][person_id][
"conversation_history"
] = keep_conversations
# Add summaries if they don't exist
if "conversation_summaries" not in social_graph.graph["people"][person_id]:
social_graph.graph["people"][person_id]["conversation_summaries"] = []
# Add the new summaries
social_graph.graph["people"][person_id]["conversation_summaries"].extend(
summaries
)
# Save the updated graph
return social_graph._save_graph()
return True
# Create the Gradio interface
with gr.Blocks(title="Will's AAC Communication Aid", css="custom.css") as demo:
gr.Markdown("# Will's AAC Communication Aid")
gr.Markdown(
"""
This demo simulates an AAC system from Will's perspective (a 38-year-old with MND). Its based on a social graph of people in Will's life and their common phrases. The idea is that this graph is generated on device securely. You can see this [here](https://github.com/willwade/skg-llm-mvp/blob/main/social_graph.json)
**How to use this demo:**
1. Select who you (Will) are talking to from the dropdown
2. Optionally select a conversation topic
3. Enter or record what the other person said to you
4. Get suggested responses based on your relationship with that person
"""
)
# Display information about Will
with gr.Accordion("About Me (Will)", open=False):
gr.Markdown(
"""
I'm Will, a 38-year-old computer programmer from Manchester with MND (diagnosed 5 months ago).
I live with my wife Emma and two children (Mabel, 4 and Billy, 7).
Originally from South East London, I enjoy technology, Manchester United, and have fond memories of cycling and hiking.
I'm increasingly using this AAC system as my speech becomes more difficult.
"""
)
with gr.Row():
with gr.Column(scale=1):
# Person selection
person_dropdown = gr.Dropdown(
choices=get_people_choices(),
label="I'm talking to:",
info="Select who you (Will) are talking to",
)
# Get topics for the selected person
def get_filtered_topics(person_id):
if not person_id:
return []
person_context = social_graph.get_person_context(person_id)
return person_context.get("topics", [])
# Topic selection dropdown
topic_dropdown = gr.Dropdown(
choices=[], # Will be populated when a person is selected
label="Topic (optional):",
info="Select a topic to discuss or respond about",
allow_custom_value=True,
)
# Context display
context_display = gr.Markdown(label="Relationship Context")
# User input section
with gr.Row():
user_input = gr.Textbox(
label="What they said to me: (leave empty to start a conversation)",
placeholder='Examples:\n"How was your physio session today?"\n"The kids are asking if you want to watch a movie tonight"\n"I\'ve been looking at that new AAC software you mentioned"',
lines=3,
)
# Audio input with auto-transcription
with gr.Column(elem_classes="audio-recorder-container"):
gr.Markdown("### π€ Or record what they said")
audio_input = gr.Audio(
label="",
type="filepath",
sources=["microphone"],
elem_classes="audio-recorder",
)
gr.Markdown(
"*Recording will auto-transcribe when stopped*",
elem_classes="auto-transcribe-hint",
)
# Suggestion type selection with emojis
suggestion_type = gr.Radio(
choices=[
"π€ model",
"π auto_detect",
"π¬ common_phrases",
]
+ get_suggestion_categories(),
value="π€ model", # Default to model for better results
label="How should I respond?",
info="Choose response type",
elem_classes="emoji-response-options",
)
# Add a mood slider with emoji indicators at the ends
with gr.Column(elem_classes="mood-slider-container"):
mood_slider = gr.Slider(
minimum=1,
maximum=5,
value=3,
step=1,
label="How am I feeling today?",
info="This will influence the tone of your responses (π’ Sad β Happy π)",
elem_classes="mood-slider",
)
# Model selection
with gr.Row():
model_dropdown = gr.Dropdown(
choices=list(AVAILABLE_MODELS.keys()),
value="gemini-1.5-flash-8b-latest",
label="Language Model",
info="Select which AI model to use (all are online API models)",
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=1.5,
value=0.7,
step=0.1,
label="Temperature",
info="Controls randomness (higher = more creative, lower = more focused)",
)
# Generate button
generate_btn = gr.Button(
"Generate My Responses/Conversation Starters", variant="primary"
)
# Model status
model_status = gr.Markdown(
value=f"Current model: {suggestion_generator.model_name}",
label="Model Status",
)
with gr.Column(scale=1):
# Common phrases
common_phrases = gr.Textbox(
label="My Common Phrases",
placeholder="Common phrases I often use with this person will appear here...",
lines=5,
)
# Conversation history display
conversation_history = gr.Markdown(
label="Recent Conversations",
value="Select a person to see recent conversations...",
elem_id="conversation_history",
)
# Suggestions output
suggestions_output = gr.Markdown(
label="My Suggested Responses",
value="Suggested responses will appear here...",
elem_id="suggestions_output", # Add an ID for easier debugging
)
# Add buttons to select and use a specific response
with gr.Row():
use_response_1 = gr.Button("Use Response 1", variant="secondary")
use_response_2 = gr.Button("Use Response 2", variant="secondary")
use_response_3 = gr.Button("Use Response 3", variant="secondary")
# Set up event handlers
def handle_person_change(person_id):
"""Handle person selection change and update UI elements."""
context_info, phrases_text, _, history_text = on_person_change(person_id)
# Get topics for this person
topics = get_filtered_topics(person_id)
# Update the context, phrases, conversation history, and topic dropdown
return context_info, phrases_text, gr.update(choices=topics), history_text
def handle_model_change(model_name):
"""Handle model selection change."""
status = change_model(model_name)
return status
# Set up the person change event
person_dropdown.change(
handle_person_change,
inputs=[person_dropdown],
outputs=[context_display, common_phrases, topic_dropdown, conversation_history],
)
# Set up the model change event
model_dropdown.change(
handle_model_change,
inputs=[model_dropdown],
outputs=[model_status],
)
# Set up the generate button click event
generate_btn.click(
generate_suggestions,
inputs=[
person_dropdown,
user_input,
suggestion_type,
topic_dropdown,
model_dropdown,
temperature_slider,
mood_slider,
],
outputs=[suggestions_output],
)
# Auto-transcribe audio to text when recording stops
audio_input.stop_recording(
transcribe_audio,
inputs=[audio_input],
outputs=[user_input],
)
# Function to extract a response from the suggestions output
def extract_response(suggestions_text, response_number):
"""Extract a specific response from the suggestions output.
Args:
suggestions_text: The text containing all suggestions
response_number: Which response to extract (1, 2, or 3)
Returns:
The extracted response or None if not found
"""
print(
f"Extracting response {response_number} from suggestions text: {suggestions_text[:100]}..."
)
if not suggestions_text:
print("Suggestions text is empty")
return None
if "AI-Generated Responses" not in suggestions_text:
print("AI-Generated Responses not found in suggestions text")
# Try to extract from any numbered list
try:
import re
pattern = rf"{response_number}\.\s+(.*?)(?=\n\n\d+\.|\n\n$|$)"
match = re.search(pattern, suggestions_text)
if match:
extracted = match.group(1).strip()
print(f"Found response using generic pattern: {extracted[:50]}...")
return extracted
except Exception as e:
print(f"Error extracting response with generic pattern: {e}")
return None
try:
# Look for numbered responses like "1. Response text"
import re
pattern = rf"{response_number}\.\s+(.*?)(?=\n\n\d+\.|\n\n$|$)"
match = re.search(pattern, suggestions_text)
if match:
extracted = match.group(1).strip()
print(f"Successfully extracted response: {extracted[:50]}...")
return extracted
else:
print(f"No match found for response {response_number}")
# Try a more lenient pattern
pattern = rf"{response_number}\.\s+(.*)"
match = re.search(pattern, suggestions_text)
if match:
extracted = match.group(1).strip()
print(f"Found response using lenient pattern: {extracted[:50]}...")
return extracted
except Exception as e:
print(f"Error extracting response: {e}")
print(f"Failed to extract response {response_number}")
return None
# Function to handle using a response
def use_response(suggestions_text, response_number, person_id, user_input_text):
"""Handle using a specific response.
Args:
suggestions_text: The text containing all suggestions
response_number: Which response to use (1, 2, or 3)
person_id: ID of the person in the conversation
user_input_text: What the person said to Will
Returns:
Updated conversation history
"""
print(f"\n=== Using Response {response_number} ===")
print(f"Person ID: {person_id}")
print(f"User input: {user_input_text}")
# Check if person_id is valid
if not person_id:
print("Error: No person_id provided")
return "Please select a person first."
# Get the people choices dictionary
people_choices = get_people_choices()
print(f"People choices: {people_choices}")
# Extract the actual ID if it's in the format "Name (role)"
actual_person_id = person_id
if person_id in people_choices:
# If the person_id is a display name, get the actual ID
actual_person_id = people_choices[person_id]
print(f"Extracted actual person ID: {actual_person_id}")
print(
f"People in social graph: {list(social_graph.graph.get('people', {}).keys())}"
)
# Check if person exists in social graph
if actual_person_id not in social_graph.graph.get("people", {}):
print(f"Error: Person {actual_person_id} not found in social graph")
return f"Error: Person {actual_person_id} not found in social graph."
# Extract the selected response
selected_response = extract_response(suggestions_text, response_number)
if not selected_response:
print("Error: Could not extract response")
return "Could not find the selected response. Please try generating responses again."
# Save the conversation
print(f"Saving conversation with response: {selected_response[:50]}...")
success = save_conversation(
actual_person_id, user_input_text, selected_response
)
if success:
print("Successfully saved conversation")
# Get updated conversation history
try:
_, _, _, updated_history = on_person_change(actual_person_id)
print("Successfully retrieved updated conversation history")
return updated_history
except Exception as e:
print(f"Error retrieving updated conversation history: {e}")
return "Conversation saved, but could not retrieve updated history."
else:
print("Failed to save conversation")
return "Failed to save the conversation. Please try again."
# Set up the response selection button events
use_response_1.click(
lambda text, person, input_text: use_response(text, 1, person, input_text),
inputs=[suggestions_output, person_dropdown, user_input],
outputs=[conversation_history],
)
use_response_2.click(
lambda text, person, input_text: use_response(text, 2, person, input_text),
inputs=[suggestions_output, person_dropdown, user_input],
outputs=[conversation_history],
)
use_response_3.click(
lambda text, person, input_text: use_response(text, 3, person, input_text),
inputs=[suggestions_output, person_dropdown, user_input],
outputs=[conversation_history],
)
# Launch the app
if __name__ == "__main__":
print("Starting application...")
try:
demo.launch()
except Exception as e:
print(f"Error launching application: {e}")
|