Spaces:
Sleeping
Sleeping
import os | |
import shutil | |
from flask import Flask, render_template, request, jsonify | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
app = Flask(__name__) | |
# Kill any process using port 7860 | |
def kill_port(port): | |
for proc in psutil.process_iter(attrs=["pid", "connections"]): | |
for conn in proc.info["connections"]: | |
if conn.laddr.port == port: | |
os.kill(proc.info["pid"], 9) | |
kill_port(7860) # Ensure Flask doesn't crash due to a used port | |
# Define cache directory | |
os.environ["HF_HOME"] = "/app/cache" | |
# Load Myanmarsar-GPT (1.42B params) from Hugging Face | |
MODEL_NAME = "simbolo-ai/Myanmarsar-GPT" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, cache_dir=cache_dir) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, cache_dir=cache_dir) | |
# Function to generate chatbot responses | |
def generate_response(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
with torch.no_grad(): | |
output = model.generate(**inputs, max_length=200) | |
return tokenizer.decode(output[0], skip_special_tokens=True) | |
# Serve the HTML page | |
def home(): | |
return render_template("index.html") | |
# API route for chatbot responses | |
def chat(): | |
user_message = request.json.get("message", "") | |
bot_reply = generate_response(user_message) | |
return jsonify({"reply": bot_reply}) | |
if __name__ == "__main__": | |
port = int(os.environ.get("PORT", 7860)) # Default to 7860, but use any assigned port | |
app.run(host="0.0.0.0", port=port) |