# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import mediapipe as mp import cv2 from decord import VideoReader import os import numpy as np import torch import tqdm from eval.fvd import compute_our_fvd class FVD: def __init__(self, resolution=(224, 224)): self.face_detector = mp.solutions.face_detection.FaceDetection(model_selection=0, min_detection_confidence=0.5) self.resolution = resolution def detect_face(self, image): height, width = image.shape[:2] # Process the image and detect faces. results = self.face_detector.process(image) if not results.detections: # Face not detected raise RuntimeError("Face not detected") detection = results.detections[0] # Only use the first face in the image bounding_box = detection.location_data.relative_bounding_box xmin = int(bounding_box.xmin * width) ymin = int(bounding_box.ymin * height) face_width = int(bounding_box.width * width) face_height = int(bounding_box.height * height) # Crop the image to the bounding box. xmin = max(0, xmin) ymin = max(0, ymin) xmax = min(width, xmin + face_width) ymax = min(height, ymin + face_height) image = image[ymin:ymax, xmin:xmax] return image def detect_video(self, video_path): vr = VideoReader(video_path) video_frames = vr[20:36].asnumpy() vr.seek(0) # avoid memory leak faces = [] for frame in video_frames: face = self.detect_face(frame) face = cv2.resize(face, (self.resolution[1], self.resolution[0]), interpolation=cv2.INTER_AREA) faces.append(face) if len(faces) != 16: return RuntimeError("Insufficient consecutive frames of faces (less than 16).") faces = np.stack(faces, axis=0) # (f, h, w, c) faces = torch.from_numpy(faces) return faces def detect_videos(self, videos_dir: str): videos_list = [] if videos_dir.endswith(".mp4"): video_faces = self.detect_video(videos_dir) videos_list.append(video_faces) else: for file in tqdm.tqdm(os.listdir(videos_dir)): if file.endswith(".mp4"): video_path = os.path.join(videos_dir, file) video_faces = self.detect_video(video_path) videos_list.append(video_faces) videos_list = torch.stack(videos_list) / 255.0 return videos_list def eval_fvd(real_videos_dir: str, fake_videos_dir: str): fvd = FVD() real_videos = fvd.detect_videos(real_videos_dir) fake_videos = fvd.detect_videos(fake_videos_dir) fvd_value = compute_our_fvd(real_videos, fake_videos, device="cpu") print(f"FVD: {fvd_value:.3f}") if __name__ == "__main__": real_videos_dir = "dir1" fake_videos_dir = "dir2" eval_fvd(real_videos_dir, fake_videos_dir)