"""
GNN-LLM Intelligent Selection System - Standalone Application
This is a standalone demo application that integrates actual API calls to NVIDIA's model serving platform.
All dependencies are self-contained within this file - no external imports required.
Features:
- Real API calls to NVIDIA's model serving platform
- Self-contained model_prompting function implementation
- Model mapping for different LLM types
- Error handling with fallback mechanisms
- Progress tracking and status updates
- Thought template integration with similarity search
- GNN-based LLM selection system
- Interactive Gradio web interface
Dependencies:
- Standard Python packages (torch, gradio, transformers, etc.)
- NVIDIA API access (configured in the client)
- No local model files or external scripts required
"""
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import GCNConv, global_mean_pool
from torch_geometric.data import Data, Batch
import numpy as np
from transformers import pipeline, LongformerModel, LongformerTokenizer
import requests
import json
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
from typing import List, Tuple, Dict, Optional, Union
import os
from datasets import load_dataset
from openai import OpenAI
# Graph Router Integration Imports
import sys
import yaml
from transformers import LongformerTokenizer as RouterTokenizer, LongformerModel as RouterModel
# Load environment variables from .env file (for local development only)
try:
from dotenv import load_dotenv
load_dotenv()
print("✅ .env file loaded successfully (local development)")
except ImportError:
print("Warning: python-dotenv not installed. Install with: pip install python-dotenv")
print("Or set NVIDIA_API_KEY environment variable manually")
except FileNotFoundError:
print("ℹ️ No .env file found - using environment variables directly")
# Check for API key
if os.getenv("NVIDIA_API_KEY") is None:
print("❌ NVIDIA_API_KEY not found in environment variables")
print("For local development: Create a .env file with: NVIDIA_API_KEY=your_api_key_here")
print("For Hugging Face Spaces: Set NVIDIA_API_KEY in Repository Secrets")
print("⚠️ Some features will be limited without API access")
else:
print("✅ NVIDIA API key loaded from environment")
NVIDIA_BASE_URL = "https://integrate.api.nvidia.com/v1"
# Add GraphRouter_eval to path
sys.path.append(os.path.join(os.path.dirname(__file__), 'GraphRouter_eval/model'))
sys.path.append(os.path.join(os.path.dirname(__file__), 'GraphRouter_eval/data_processing'))
sys.path.append(os.path.join(os.path.dirname(__file__), 'GraphRouter_eval'))
try:
# Import the GraphRouter_eval package
import sys
import os
# Add the parent directory to Python path so we can import GraphRouter_eval as a package
current_dir = os.path.dirname(__file__)
if current_dir not in sys.path:
sys.path.insert(0, current_dir)
# Import the required modules
from GraphRouter_eval.model.multi_task_graph_router import graph_router_prediction
GRAPH_ROUTER_AVAILABLE = True
print("✅ Graph router successfully imported")
except ImportError as e:
print(f"Warning: Graph router not available: {e}")
GRAPH_ROUTER_AVAILABLE = False
# Set up CUDA device for faster embedding calculations
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
print(f"CUDA device set to: {os.environ.get('CUDA_VISIBLE_DEVICES', 'Not set')}")
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"CUDA device count: {torch.cuda.device_count()}")
print(f"Current CUDA device: {torch.cuda.current_device()}")
print(f"CUDA device name: {torch.cuda.get_device_name(0)}")
# Initialize OpenAI client for NVIDIA API
def initialize_nvidia_client():
"""Initialize the NVIDIA API client with proper error handling"""
api_key = os.getenv("NVIDIA_API_KEY")
if api_key is None:
print("❌ NVIDIA API key not found. Please create a .env file with your API key")
print(" For Hugging Face Spaces: Set NVIDIA_API_KEY in Repository Secrets")
return None
else:
try:
client = OpenAI(
base_url=NVIDIA_BASE_URL,
api_key=api_key,
timeout=60,
max_retries=2
)
print("✅ NVIDIA API client initialized successfully")
return client
except Exception as e:
print(f"❌ Failed to initialize NVIDIA API client: {e}")
return None
def validate_api_key(api_key: str) -> dict:
"""Validate the NVIDIA API key format and return detailed analysis"""
analysis = {
'valid': True,
'issues': [],
'format_ok': False,
'length_ok': False,
'charset_ok': False
}
if not api_key:
analysis['valid'] = False
analysis['issues'].append("API key is empty or None")
return analysis
# Check length (NVIDIA API keys are typically 40-50 characters)
if len(api_key) < 30 or len(api_key) > 60:
analysis['length_ok'] = False
analysis['issues'].append(f"Key length ({len(api_key)}) seems unusual (expected 30-60 chars)")
else:
analysis['length_ok'] = True
# Check format (should start with nvapi- or nv-)
if not (api_key.startswith('nvapi-') or api_key.startswith('nv-')):
analysis['format_ok'] = False
analysis['issues'].append("Key should start with 'nvapi-' or 'nv-'")
else:
analysis['format_ok'] = True
# Check for whitespace or special characters
if any(c.isspace() for c in api_key):
analysis['charset_ok'] = False
analysis['issues'].append("Key contains whitespace characters")
elif not all(c.isalnum() or c in '-_' for c in api_key):
analysis['charset_ok'] = False
analysis['issues'].append("Key contains invalid characters")
else:
analysis['charset_ok'] = True
# Overall validity
analysis['valid'] = analysis['format_ok'] and analysis['length_ok'] and analysis['charset_ok']
return analysis
# Initialize the client
client = initialize_nvidia_client()
def test_nvidia_api_connection():
"""Test the NVIDIA API connection to verify authentication"""
current_client = ensure_client_available()
if current_client is None:
print("❌ Cannot test API connection - client not initialized")
return False
try:
print("🧪 Testing NVIDIA API connection...")
# Make a simple test call
test_response = current_client.chat.completions.create(
model="meta/llama-3.1-8b-instruct",
messages=[{"role": "user", "content": "Hello"}],
max_tokens=10,
temperature=0.0,
stream=False
)
print("✅ NVIDIA API connection test successful")
return True
except Exception as e:
print(f"❌ NVIDIA API connection test failed: {e}")
return False
def ensure_client_available():
"""Ensure the NVIDIA API client is available, reinitialize if needed"""
global client
if client is not None:
return client
# Try to reinitialize the client
print("🔄 Client not available, attempting to reinitialize...")
api_key = os.getenv("NVIDIA_API_KEY")
if api_key:
client = initialize_nvidia_client()
if client is not None:
print("✅ Client successfully reinitialized")
return client
else:
print("❌ Failed to reinitialize client")
return None
else:
print("❌ No API key available for client initialization")
return None
def model_prompting(
llm_model: str,
prompt: str,
max_token_num: Optional[int] = 1024, # Changed from 2048 to 1024
temperature: Optional[float] = 0.2,
top_p: Optional[float] = 0.7,
stream: Optional[bool] = True,
) -> Union[str, None]:
"""
Get a response from an LLM model using the OpenAI-compatible NVIDIA API.
Args:
llm_model: Name of the model to use (e.g., "meta/llama-3.1-8b-instruct")
prompt: Input prompt text
max_token_num: Maximum number of tokens to generate
temperature: Sampling temperature
top_p: Top-p sampling parameter
stream: Whether to stream the response
Returns:
Generated text response
"""
# Ensure client is available
current_client = ensure_client_available()
if current_client is None:
raise Exception("NVIDIA API client not initialized. Please check your .env file contains NVIDIA_API_KEY")
# Debug information
api_key = os.getenv("NVIDIA_API_KEY")
if api_key:
print(f"🔑 API Key available: {api_key[:8]}...{api_key[-4:]}")
print(f" Key length: {len(api_key)} characters")
else:
print("❌ No API key found in environment")
try:
print(f"🚀 Making API call to model: {llm_model}")
completion = current_client.chat.completions.create(
model=llm_model,
messages=[{"role": "user", "content": prompt}],
max_tokens=max_token_num,
temperature=temperature,
top_p=top_p,
stream=stream
)
response_text = ""
for chunk in completion:
if chunk.choices[0].delta.content is not None:
response_text += chunk.choices[0].delta.content
return response_text
except Exception as e:
error_msg = str(e)
print(f"❌ API call failed: {error_msg}")
# Provide more specific error information
if "401" in error_msg or "Unauthorized" in error_msg:
print("🔍 Authentication Error Details:")
print(f" - API Key present: {'Yes' if api_key else 'No'}")
print(f" - API Key length: {len(api_key) if api_key else 0}")
print(f" - Base URL: {NVIDIA_BASE_URL}")
print(" - For Hugging Face Spaces: Check if NVIDIA_API_KEY is set in Repository Secrets")
print(" - For local development: Check if .env file contains NVIDIA_API_KEY")
raise Exception(f"API call failed: {error_msg}")
# Initialize the Longformer model for embeddings (same as enhance_query_with_templates.py)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Device set to use: {device}")
MODEL_NAME = "allenai/longformer-base-4096"
try:
tokenizer = LongformerTokenizer.from_pretrained(MODEL_NAME)
model_long = LongformerModel.from_pretrained(MODEL_NAME)
# Ensure model is on the correct device
model_long = model_long.to(device)
print(f"Successfully loaded Longformer model: {MODEL_NAME} on {device}")
except Exception as e:
print(f"Warning: Could not load Longformer model: {e}")
tokenizer = None
model_long = None
def get_longformer_representation(text):
"""
Get representations of long text using Longformer on CUDA:0 device
"""
if model_long is None or tokenizer is None:
raise Exception("Longformer model not available")
# Set model to evaluation mode for faster inference
model_long.eval()
inputs = tokenizer(text, return_tensors="pt", max_length=4096, truncation=True)
inputs = {k: v.to(device) for k, v in inputs.items()}
global_attention_mask = torch.zeros(
inputs["input_ids"].shape,
dtype=torch.long,
device=device
)
global_attention_mask[:, 0] = 1
# Use torch.no_grad() for faster inference and less memory usage
with torch.no_grad():
outputs = model_long(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
global_attention_mask=global_attention_mask,
output_hidden_states=True
)
# Move result to CPU and convert to numpy for faster processing
return outputs.last_hidden_state[0, 0, :].cpu()
def get_embedding(instructions: List[str]) -> np.ndarray:
"""
Get embeddings for a list of texts using Longformer.
"""
if model_long is None:
raise Exception("Longformer model not available")
try:
embeddings = []
# Process in batches for better GPU utilization
batch_size = 4 # Adjust based on GPU memory
for i in range(0, len(instructions), batch_size):
batch_texts = instructions[i:i + batch_size]
batch_embeddings = []
for text in batch_texts:
representation = get_longformer_representation(text)
batch_embeddings.append(representation.numpy())
embeddings.extend(batch_embeddings)
return np.array(embeddings)
except Exception as e:
raise Exception(f"Error generating embeddings: {str(e)}")
def parse_embedding(embedding_str):
"""Parse embedding string to numpy array, handling different formats."""
if embedding_str is None:
return None
if isinstance(embedding_str, np.ndarray):
return embedding_str
try:
if isinstance(embedding_str, str) and 'tensor' in embedding_str:
clean_str = embedding_str.replace('tensor(', '').replace(')', '')
if 'device=' in clean_str:
clean_str = clean_str.split('device=')[0].strip()
clean_str = clean_str.replace('\n', '').replace(' ', '')
embedding = np.array(eval(clean_str))
if embedding.ndim == 2 and embedding.shape[0] == 1:
embedding = embedding.squeeze(0)
return embedding
elif isinstance(embedding_str, str):
clean_str = embedding_str.replace('[', '').replace(']', '')
return np.array([float(x) for x in clean_str.split(',') if x.strip()])
elif isinstance(embedding_str, (int, float)):
return np.array([embedding_str])
else:
return None
except Exception as e:
print(f"Error parsing embedding: {str(e)}")
return None
def get_template_subset_name(model_size: str, template_size: str) -> str:
"""
Get the HuggingFace dataset subset name based on model size and template size.
"""
return f"thought_template_{model_size}_{template_size}"
def load_template_dataset(model_size: str, template_size: str) -> pd.DataFrame:
"""
Load thought templates from HuggingFace dataset with robust error handling for Spaces deployment.
"""
subset_name = get_template_subset_name(model_size, template_size)
# Try multiple approaches to load the dataset
approaches = [
# Approach 1: Direct load with timeout
lambda: load_dataset("ulab-ai/FusionBench", subset_name, trust_remote_code=True),
# Approach 2: Load with cache_dir specification
lambda: load_dataset("ulab-ai/FusionBench", subset_name, cache_dir="./cache", trust_remote_code=True),
# Approach 3: Load with streaming (for large datasets)
lambda: load_dataset("ulab-ai/FusionBench", subset_name, streaming=True, trust_remote_code=True),
]
for i, approach in enumerate(approaches, 1):
try:
print(f"Attempting to load templates (approach {i}): ulab-ai/FusionBench, subset: {subset_name}")
dataset = approach()
# Handle streaming dataset
if hasattr(dataset, 'iter') and callable(dataset.iter):
# Convert streaming dataset to list
data_list = list(dataset['data'])
template_df = pd.DataFrame(data_list)
else:
# Regular dataset
template_df = pd.DataFrame(dataset['data'])
print(f"✅ Successfully loaded {len(template_df)} templates from {subset_name}")
return template_df
except Exception as e:
print(f"❌ Approach {i} failed: {str(e)}")
if i == len(approaches):
# All approaches failed, provide detailed error
error_msg = f"Failed to load template dataset {subset_name} after trying {len(approaches)} approaches. Last error: {str(e)}"
print(error_msg)
# Return empty DataFrame with warning
print("⚠️ Returning empty template DataFrame - functionality will be limited")
return pd.DataFrame(columns=['query', 'thought_template', 'task_description', 'query_embedding'])
# This should never be reached, but just in case
return pd.DataFrame(columns=['query', 'thought_template', 'task_description', 'query_embedding'])
def enhance_query_with_templates(
model_size: str,
template_size: str,
query: str,
query_embedding: Optional[np.ndarray] = None,
task_description: Optional[str] = None,
top_k: int = 3
) -> Tuple[str, List[Dict]]:
"""
Enhance a query with thought templates by finding similar templates and creating an enhanced prompt.
"""
if model_size not in ["70b", "8b"]:
raise ValueError("model_size must be either '70b' or '8b'")
if template_size not in ["full", "small"]:
raise ValueError("template_size must be either 'full' or 'small'")
# Load template data from HuggingFace dataset
template_df = load_template_dataset(model_size, template_size)
# Check if dataset is empty (failed to load)
if template_df.empty:
print("⚠️ Template dataset is empty - returning original query")
return query, []
# Generate embedding for the query if not provided
if query_embedding is None:
try:
query_embedding = get_embedding([query])[0]
print(f"Generated embedding for query: {query[:50]}...")
except Exception as e:
print(f"Failed to generate embedding for query: {str(e)}")
return query, []
# Filter templates by task description if provided
if task_description is None or not task_description.strip():
matching_templates = template_df
print(f"Using all {len(matching_templates)} templates (no task filter)")
else:
matching_templates = template_df[template_df['task_description'] == task_description]
if matching_templates.empty:
task_desc_lower = task_description.lower()
partial_matches = template_df[template_df['task_description'].str.lower().str.contains(task_desc_lower.split()[0], na=False)]
if not partial_matches.empty:
matching_templates = partial_matches
print(f"Found partial matches for task: {task_description[:50]}... ({len(matching_templates)} templates)")
else:
print(f"No matching templates found for task: {task_description[:50]}... - using all templates")
matching_templates = template_df
if matching_templates.empty:
print("No matching templates found. Returning original query.")
return query, []
print(f"Processing {len(matching_templates)} templates for similarity calculation...")
# Calculate similarities with template embeddings
similarities = []
for t_idx, t_row in matching_templates.iterrows():
template_embedding = None
# Try to parse existing template embedding
if 'query_embedding' in t_row and not pd.isna(t_row['query_embedding']):
try:
template_embedding = parse_embedding(t_row['query_embedding'])
except Exception as e:
print(f"Failed to parse template embedding: {str(e)}")
template_embedding = None
# If no valid embedding found, generate one for the template query
if template_embedding is None and 'query' in t_row:
try:
template_embedding = get_embedding([t_row['query']])[0]
print(f"Generated embedding for template query: {t_row['query'][:50]}...")
except Exception as e:
print(f"Failed to generate embedding for template query: {str(e)}")
continue
if template_embedding is not None:
try:
q_emb = query_embedding.reshape(1, -1)
t_emb = template_embedding.reshape(1, -1)
if q_emb.shape[1] != t_emb.shape[1]:
print(f"Dimension mismatch: query={q_emb.shape[1]}, template={t_emb.shape[1]}")
continue
sim = cosine_similarity(q_emb, t_emb)[0][0]
similarities.append((t_idx, sim))
except Exception as e:
print(f"Error calculating similarity: {str(e)}")
continue
if not similarities:
print("No valid similarities found. Returning original query.")
return query, []
# Sort by similarity (highest first) and get top k
similarities.sort(key=lambda x: x[1], reverse=True)
top_n = min(top_k, len(similarities))
top_indices = [idx for idx, _ in similarities[:top_n]]
top_templates = matching_templates.loc[top_indices]
print(f"Found {len(similarities)} similar templates, selected top {top_n}")
print(f"Top similarity scores: {[sim for _, sim in similarities[:top_n]]}")
# Create enhanced query
enhanced_query = "Here are some similar questions and guidelines in how to solve them:\n\n"
retrieved_templates = []
for i, (t_idx, t_row) in enumerate(top_templates.iterrows(), 1):
enhanced_query += f"Question{i}: {t_row['query']}\n\n"
enhanced_query += f"Thought Template {i}: {t_row['thought_template']}\n\n"
retrieved_templates.append({
'index': i,
'query': t_row['query'],
'thought_template': t_row['thought_template'],
'task_description': t_row.get('task_description', ''),
'similarity_score': similarities[i-1][1] if i-1 < len(similarities) else None
})
enhanced_query += "Now, please solve the following question:\n\n"
enhanced_query += query
enhanced_query += "\n\n Use the thought templates above as guidance. Reason step by step. And provide the final answer! The final answer should be enclosed in and tags."
return enhanced_query, retrieved_templates
def load_thought_templates(template_style):
"""
Load thought templates based on the selected style using HuggingFace datasets.
"""
# Map template style to model_size and template_size
style_mapping = {
"8b_full": ("8b", "full"),
"8b_small": ("8b", "small"),
"70b_full": ("70b", "full"),
"70b_small": ("70b", "small")
}
if template_style not in style_mapping:
return None, f"Template style '{template_style}' not found"
model_size, template_size = style_mapping[template_style]
try:
template_df = load_template_dataset(model_size, template_size)
return template_df, f"Successfully loaded {len(template_df)} templates from {template_style}"
except Exception as e:
return None, f"Error loading templates: {str(e)}"
# GNN network for LLM selection
class LLMSelectorGNN(nn.Module):
def __init__(self, input_dim, hidden_dim, num_llms):
super(LLMSelectorGNN, self).__init__()
self.conv1 = GCNConv(input_dim, hidden_dim)
self.conv2 = GCNConv(hidden_dim, hidden_dim)
self.classifier = nn.Linear(hidden_dim, num_llms)
self.dropout = nn.Dropout(0.2)
def forward(self, x, edge_index, batch):
# GNN forward pass
x = F.relu(self.conv1(x, edge_index))
x = self.dropout(x)
x = F.relu(self.conv2(x, edge_index))
# Graph-level pooling
x = global_mean_pool(x, batch)
# Classifier output for LLM selection probabilities
logits = self.classifier(x)
return F.softmax(logits, dim=1)
# Model name mapping dictionary
MODEL_MAPPING = {
"granite-3.0-8b-instruct": "ibm/granite-3.0-8b-instruct",
"qwen2.5-7b-instruct": "qwen/qwen2.5-7b-instruct",
"llama-3.1-8b-instruct": "meta/llama-3.1-8b-instruct",
"mistral-nemo-12b-instruct": "nv-mistralai/mistral-nemo-12b-instruct"
}
def get_mapped_model_name(model_name: str) -> str:
"""Map the input model name to the correct API model name"""
return MODEL_MAPPING.get(model_name, model_name)
# LLM configurations
LLM_CONFIGS = {
0: {
"name": "GPT-3.5 (General Tasks)",
"description": "Suitable for daily conversations and general text generation",
"model_type": "openai",
"api_model": "granite-3.0-8b-instruct"
},
1: {
"name": "Claude (Analysis & Reasoning)",
"description": "Excels at logical analysis and complex reasoning tasks",
"model_type": "anthropic",
"api_model": "qwen2.5-7b-instruct"
},
2: {
"name": "LLaMA (Code Generation)",
"description": "Specialized model optimized for code generation",
"model_type": "meta",
"api_model": "llama-3.1-8b-instruct"
},
3: {
"name": "Gemini (Multimodal)",
"description": "Supports text, image and other multimodal tasks",
"model_type": "google",
"api_model": "mistral-nemo-12b-instruct"
}
}
# Prompt Templates
PROMPT_TEMPLATES = {
"code_assistant": "You are an expert programming assistant. Please help with the following coding task:\n\nTask: {query}\n\nRequirements:\n- Provide clean, well-commented code\n- Explain the logic and approach\n- Include error handling where appropriate\n- Suggest best practices\n\nResponse:",
"academic_tutor": "You are a knowledgeable academic tutor. Please help explain the following topic:\n\nTopic: {query}\n\nPlease provide:\n- Clear, structured explanation\n- Key concepts and definitions\n- Real-world examples or applications\n- Practice questions or exercises if relevant\n\nExplanation:",
"business_consultant": "You are a strategic business consultant. Please analyze the following business scenario:\n\nScenario: {query}\n\nPlease provide:\n- Situation analysis\n- Key challenges and opportunities\n- Strategic recommendations\n- Implementation considerations\n- Risk assessment\n\nAnalysis:",
"creative_writer": "You are a creative writing assistant. Please help with the following creative task:\n\nCreative Request: {query}\n\nPlease provide:\n- Original and engaging content\n- Rich descriptions and imagery\n- Appropriate tone and style\n- Creative elements and storytelling techniques\n\nCreative Response:",
"research_analyst": "You are a thorough research analyst. Please investigate the following topic:\n\nResearch Topic: {query}\n\nPlease provide:\n- Comprehensive overview\n- Key findings and insights\n- Data analysis and trends\n- Reliable sources and references\n- Conclusions and implications\n\nResearch Report:",
"custom": "{template}\n\nQuery: {query}\n\nResponse:"
}
class GNNLLMSystem:
def __init__(self):
# Initialize GNN model
self.gnn_model = LLMSelectorGNN(input_dim=768, hidden_dim=256, num_llms=4)
self.load_pretrained_model()
# Initialize local LLM pipeline (as backup)
try:
self.local_llm = pipeline("text-generation",
model="microsoft/DialoGPT-medium",
tokenizer="microsoft/DialoGPT-medium")
except:
self.local_llm = None
def load_pretrained_model(self):
"""Load pretrained GNN model weights"""
# Load your trained model weights here
# self.gnn_model.load_state_dict(torch.load('gnn_selector.pth'))
# For demonstration purposes, we use randomly initialized weights
pass
def query_to_graph(self, query):
"""Convert query to graph structure"""
# This is a simplified implementation, you need to design based on specific requirements
words = query.lower().split()
# Create node features (simulated with simple word embeddings)
vocab_size = 1000
node_features = []
for word in words:
# Simple hash mapping to feature vector
hash_val = hash(word) % vocab_size
feature = np.random.randn(768) # Simulate 768-dim word embedding
feature[hash_val % 768] += 1.0 # Add some structural information
node_features.append(feature)
if len(node_features) == 0:
node_features = [np.random.randn(768)]
# Create edge connections (fully connected graph as example)
num_nodes = len(node_features)
edge_index = []
for i in range(num_nodes):
for j in range(i + 1, num_nodes):
edge_index.extend([[i, j], [j, i]])
if len(edge_index) == 0:
edge_index = [[0, 0]]
# Convert to PyTorch tensors
x = torch.FloatTensor(node_features)
edge_index = torch.LongTensor(edge_index).t().contiguous()
return Data(x=x, edge_index=edge_index)
def select_llm(self, query):
"""Use GNN to select the most suitable LLM"""
# Convert query to graph
graph_data = self.query_to_graph(query)
batch = torch.zeros(graph_data.x.size(0), dtype=torch.long)
# GNN inference
with torch.no_grad():
self.gnn_model.eval()
probabilities = self.gnn_model(graph_data.x, graph_data.edge_index, batch)
selected_llm_idx = torch.argmax(probabilities, dim=1).item()
confidence = probabilities[0][selected_llm_idx].item()
return selected_llm_idx, confidence, probabilities[0].tolist()
def generate_response(self, query, selected_llm_idx, use_template=False, template_key=None, custom_template=None):
"""Generate response using selected LLM and optional template"""
llm_config = LLM_CONFIGS[selected_llm_idx]
# Apply template if requested
if use_template:
if template_key == "custom" and custom_template:
formatted_query = PROMPT_TEMPLATES["custom"].format(template=custom_template, query=query)
elif template_key in PROMPT_TEMPLATES:
formatted_query = PROMPT_TEMPLATES[template_key].format(query=query)
else:
formatted_query = query
else:
formatted_query = query
try:
# Get the API model name
api_model = llm_config.get("api_model", "llama-3.1-8b-instruct")
mapped_model_name = get_mapped_model_name(api_model)
# Call the actual API
response = model_prompting(
llm_model=mapped_model_name,
prompt=formatted_query,
max_token_num=1024, # Changed from 4096 to 1024
temperature=0.0,
top_p=0.9,
stream=True
)
return response
except Exception as e:
# Fallback to local LLM or error message
error_msg = f"API Error: {str(e)}"
if self.local_llm:
try:
result = self.local_llm(formatted_query, max_length=100, num_return_sequences=1)
return result[0]['generated_text']
except:
return f"Sorry, unable to generate response. Error: {error_msg}"
else:
return f"Sorry, unable to generate response. Error: {error_msg}"
# Create system instance
gnn_llm_system = GNNLLMSystem()
# LLM Name Mapping from Graph Router to API Models
LLM_NAME_MAPPING = {
"qwen2-7b-instruct": "qwen/qwen2-7b-instruct",
"qwen2.5-7b-instruct": "qwen/qwen2.5-7b-instruct",
"gemma-7b": "google/gemma-7b",
"codegemma-7b": "google/codegemma-7b",
"gemma-2-9b-it": "google/gemma-2-9b-it",
"llama-3.1-8b-instruct": "meta/llama-3.1-8b-instruct",
"granite-3.0-8b-instruct": "ibm/granite-3.0-8b-instruct",
"llama3-chatqa-1.5-8b": "nvidia/llama3-chatqa-1.5-8b",
"mistral-nemo-12b-instruct": "nv-mistralai/mistral-nemo-12b-instruct",
"mistral-7b-instruct-v0.3": "mistralai/mistral-7b-instruct-v0.3",
"llama-3.3-nemotron-super-49b-v1": "nvidia/llama-3.3-nemotron-super-49b-v1",
"llama-3.1-nemotron-51b-instruct": "nvidia/llama-3.1-nemotron-51b-instruct",
"llama3-chatqa-1.5-70b": "nvidia/llama3-chatqa-1.5-70b",
"llama-3.1-70b-instruct": "meta/llama3-70b-instruct",
"llama3-70b-instruct": "meta/llama-3.1-8b-instruct",
"granite-34b-code-instruct": "ibm/granite-34b-code-instruct",
"mixtral-8x7b-instruct-v0.1": "mistralai/mixtral-8x7b-instruct-v0.1",
"deepseek-r1": "deepseek-ai/deepseek-r1",
"mixtral-8x22b-instruct-v0.1": "mistralai/mixtral-8x22b-instruct-v0.1",
"palmyra-creative-122b": "writer/palmyra-creative-122b"
}
def map_llm_to_api(llm_name: str) -> str:
"""Map graph router LLM name to API model name"""
return LLM_NAME_MAPPING.get(llm_name, "meta/llama-3.1-8b-instruct") # Default fallback
def get_cls_embedding_for_router(text, model_name="allenai/longformer-base-4096", device=None):
"""
Extracts the [CLS] embedding from a given text using Longformer for router.
This is a separate function to avoid conflicts with the existing one.
"""
if device is None:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load tokenizer and model
tokenizer = RouterTokenizer.from_pretrained(model_name)
model = RouterModel.from_pretrained(model_name).to(device)
model.eval()
# Tokenize input
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=4096).to(device)
with torch.no_grad():
outputs = model(**inputs)
cls_embedding = outputs.last_hidden_state[:, 0, :] # (1, hidden_size)
return cls_embedding
def generate_task_description_for_router(query: str) -> str:
"""
Generate a concise task description using LLM API for router.
"""
prompt = f"""Analyze the following query and provide a concise task description that identifies the type of task and domain it belongs to. Focus on the core problem type and relevant domain areas.
Query: {query}
Please provide a brief, focused task description that captures:
1. The primary task type (e.g., mathematical calculation, text analysis, coding, reasoning, etc.)
2. The relevant domain or subject area
3. The complexity level or approach needed
Keep the description concise and informative. Respond with just the task description, no additional formatting."""
try:
task_description = model_prompting(
llm_model="meta/llama-3.1-8b-instruct",
prompt=prompt,
max_token_num=1024, # Changed from 2048 to 1024
temperature=0.1,
top_p=0.9,
stream=True
)
return task_description.strip()
except Exception as e:
print(f"Warning: Failed to generate task description via API: {str(e)}")
return "General query processing task requiring analysis and response generation."
def get_routed_llm(query: str, config_path: str = None) -> Tuple[str, str, str]:
"""
Use graph router to get the best LLM for a query.
Returns:
Tuple of (routed_llm_name, task_description, selection_info)
"""
if not GRAPH_ROUTER_AVAILABLE:
print("Graph router not available, using fallback")
selection_info = f"""
🔄 **Fallback Mode**: Graph router not available
🤖 **Selected LLM**: llama-3.1-8b-instruct (Default)
🔗 **API Model**: meta/llama-3.1-8b-instruct
📝 **Task Description**: General query processing
📋 **LLM Details**: Meta's 8B Llama-3 series for chat & reasoning; $0.20/M input and $0.20/M output
⚠️ **Note**: Using fallback system due to missing graph router components
"""
return "llama-3.1-8b-instruct", "General query processing", selection_info
try:
print(f"Starting graph router analysis for query: {query[:50]}...")
# Store current working directory
original_cwd = os.getcwd()
# Change to GraphRouter_eval directory for relative paths to work
graph_router_dir = os.path.join(os.path.dirname(__file__), 'GraphRouter_eval')
os.chdir(graph_router_dir)
try:
# Use default config path if none provided
if config_path is None:
config_path = 'configs/config.yaml'
# Load configuration
with open(config_path, 'r', encoding='utf-8') as file:
config = yaml.safe_load(file)
# Load training data
train_df = pd.read_csv(config['train_data_path'])
train_df = train_df[train_df["task_name"] != 'quac']
print(f"Loaded {len(train_df)} training samples")
# Generate embeddings for the query
print("Generating query embeddings...")
user_query_embedding = get_cls_embedding_for_router(query).squeeze(0)
# Generate task description
print("Generating task description...")
user_task_description = generate_task_description_for_router(query)
print(f"Task description: {user_task_description}")
# Generate embeddings for the task description
print("Generating task description embeddings...")
user_task_embedding = get_cls_embedding_for_router(user_task_description).squeeze(0)
# Prepare test dataframe
test_df = train_df.head(config['llm_num']).copy()
test_df['query'] = query
test_df['task_description'] = user_task_description
test_df.loc[0, 'query_embedding'] = str(user_query_embedding)
test_df.loc[0, 'task_description'] = str(user_task_embedding)
# Run graph router prediction
print("Running graph router prediction...")
router = graph_router_prediction(
router_data_train=train_df,
router_data_test=test_df,
llm_path=config['llm_description_path'],
llm_embedding_path=config['llm_embedding_path'],
config=config
)
# Get the routed LLM name
routed_llm_name = router.test_GNN()
print(f"Graph router selected: {routed_llm_name}")
# Load LLM descriptions to get detailed information
try:
with open(config['llm_description_path'], 'r', encoding='utf-8') as f:
llm_descriptions = json.load(f)
# Get LLM details
llm_info = llm_descriptions.get(routed_llm_name, {})
llm_feature = llm_info.get('feature', 'No description available')
input_price = llm_info.get('input_price', 'Unknown')
output_price = llm_info.get('output_price', 'Unknown')
# Determine if it's a think mode model
think_mode = routed_llm_name.endswith('_think')
base_model_name = routed_llm_name[:-6] if think_mode else routed_llm_name
# Create detailed selection info with enhanced LLM information
api_model = map_llm_to_api(routed_llm_name)
selection_info = f"""
🎯 **Graph Router Analysis Complete**
🤖 **Selected LLM**: {routed_llm_name}
🔗 **API Model**: {api_model}
📝 **Task Description**: {user_task_description}
✅ **Routing Method**: Advanced Graph Neural Network
📊 **Analysis**: Query analyzed for optimal model selection
⚡ **Performance**: Cost-performance optimized routing
**📋 LLM Details:**
• **Model**: {base_model_name}
• **Mode**: {'Think Mode (Step-by-step reasoning)' if think_mode else 'Standard Mode'}
• **Features**: {llm_feature}
• **Pricing**: ${input_price}/M input tokens, ${output_price}/M output tokens
• **Provider**: {api_model.split('/')[0] if '/' in api_model else 'Unknown'}
**🎯 Selection Rationale:**
The Graph Neural Network analyzed your query and determined this model provides the best balance of performance, cost, and capability for your specific task type.
"""
except Exception as e:
print(f"Warning: Could not load LLM descriptions: {e}")
# Fallback to basic information
api_model = map_llm_to_api(routed_llm_name)
selection_info = f"""
🎯 **Graph Router Analysis Complete**
🤖 **Selected LLM**: {routed_llm_name}
🔗 **API Model**: {api_model}
📝 **Task Description**: {user_task_description}
✅ **Routing Method**: Advanced Graph Neural Network
📊 **Analysis**: Query analyzed for optimal model selection
⚡ **Performance**: Cost-performance optimized routing
"""
return routed_llm_name, user_task_description, selection_info
finally:
# Restore original working directory
os.chdir(original_cwd)
except FileNotFoundError as e:
print(f"Configuration file not found: {e}")
selection_info = f"""
❌ **Configuration Error**: {str(e)}
🔄 **Fallback**: Using default LLM
🤖 **Selected LLM**: llama-3.1-8b-instruct (Default)
🔗 **API Model**: meta/llama-3.1-8b-instruct
📝 **Task Description**: General query processing
📋 **LLM Details**: Meta's 8B Llama-3 series for chat & reasoning; $0.20/M input and $0.20/M output
"""
return "llama-3.1-8b-instruct", "General query processing", selection_info
except Exception as e:
print(f"Error in graph router: {str(e)}")
selection_info = f"""
❌ **Graph Router Error**: {str(e)}
🔄 **Fallback**: Using default LLM
🤖 **Selected LLM**: llama-3.1-8b-instruct (Default)
🔗 **API Model**: meta/llama-3.1-8b-instruct
📝 **Task Description**: General query processing
📋 **LLM Details**: Meta's 8B Llama-3 series for chat & reasoning; $0.20/M input and $0.20/M output
⚠️ **Note**: Advanced routing failed, using fallback system
"""
return "llama-3.1-8b-instruct", "General query processing", selection_info
def process_query(query):
"""Main function to process user queries using Graph Router"""
if not query.strip():
return "Please enter your question", ""
try:
print(f"Processing query: {query[:50]}...")
# Check client availability before processing
print("🔍 Checking client availability...")
current_client = ensure_client_available()
if current_client is None:
raise Exception("NVIDIA API client not available. Please check your API key configuration.")
print("✅ Client available for processing")
# Use Graph Router to select the best LLM
routed_llm_name, task_description, selection_info = get_routed_llm(query)
print(f"Graph router selected: {routed_llm_name}")
# Check if the routed LLM name has "_think" suffix
think_mode = False
actual_llm_name = routed_llm_name
if routed_llm_name.endswith("_think"):
think_mode = True
actual_llm_name = routed_llm_name[:-6] # Remove "_think" suffix
print(f"Think mode detected. Actual model: {actual_llm_name}")
# Map the actual LLM name to API model name
api_model = map_llm_to_api(actual_llm_name)
print(f"Mapped to API model: {api_model}")
# Prepare the prompt - append "please think step by step" if in think mode
final_prompt = query
if think_mode:
final_prompt = query + "\n\nPlease think step by step."
print("Added 'please think step by step' to the prompt")
# Generate response using the routed LLM
print("Generating response...")
response = model_prompting(
llm_model=api_model,
prompt=final_prompt,
max_token_num=1024, # Changed from 4096 to 1024
temperature=0.0,
top_p=0.9,
stream=True
)
print("Response generated successfully")
# Update selection info to show think mode if applicable
if think_mode:
selection_info = selection_info.replace(
f"🤖 **Selected LLM**: {routed_llm_name}",
f"🤖 **Selected LLM**: {actual_llm_name} (Think Mode)"
)
selection_info = selection_info.replace(
f"🔗 **API Model**: {api_model}",
f"🔗 **API Model**: {api_model}\n🧠 **Mode**: Step-by-step reasoning enabled"
)
except Exception as e:
print(f"Error in process_query: {str(e)}")
response = f"Error generating response: {str(e)}"
# Update selection info to show error
selection_info = f"""
❌ **Processing Error**: {str(e)}
🔄 **Fallback**: Using default response
⚠️ **Note**: An error occurred during processing
"""
return response, selection_info
def process_template_query(query, template_type, custom_template):
"""Process query using prompt template"""
if not query.strip():
return "Please enter your question", "", ""
# Use GNN to select LLM
selected_llm_idx, confidence, all_probabilities = gnn_llm_system.select_llm(query)
# Generate selection information
selected_llm_info = LLM_CONFIGS[selected_llm_idx]
template_names = {
"code_assistant": "💻 Code Assistant",
"academic_tutor": "📚 Academic Tutor",
"business_consultant": "💼 Business Consultant",
"creative_writer": "✍️ Creative Writer",
"research_analyst": "🔬 Research Analyst",
"custom": "🎨 Custom Template"
}
selection_info = f"""
🎯 **Template Used**: {template_names.get(template_type, template_type)}
🤖 **Selected LLM**: {selected_llm_info['name']}
📝 **Reason**: {selected_llm_info['description']}
🎯 **Confidence**: {confidence:.2%}
🔗 **API Model**: {selected_llm_info.get('api_model', 'Unknown')}
**Selection Probabilities for All LLMs**:
"""
for i, prob in enumerate(all_probabilities):
llm_name = LLM_CONFIGS[i]['name']
selection_info += f"- {llm_name}: {prob:.2%}\n"
# Generate response using template
try:
response = gnn_llm_system.generate_response(
query, selected_llm_idx, use_template=True,
template_key=template_type, custom_template=custom_template
)
status_message = '
✅ Template query processed successfully with API
'
except Exception as e:
response = f"Error generating response: {str(e)}"
status_message = '⚠️ API call failed, using fallback
'
return response, selection_info, status_message
def process_thought_template_query(query, template_style, task_description, top_n):
"""Process query using thought templates with similarity search - no routing"""
if not query.strip():
return "Please enter your question", "", ""
# Process query with thought templates using the new function
try:
# Map template style to model_size and template_size
style_mapping = {
"8b_full": ("8b", "full"),
"8b_small": ("8b", "small"),
"70b_full": ("70b", "full"),
"70b_small": ("70b", "small")
}
if template_style not in style_mapping:
error_msg = f"Invalid template style: {template_style}"
return error_msg, "", ""
model_size, template_size = style_mapping[template_style]
# Use the enhance_query_with_templates function
enhanced_query, retrieved_templates = enhance_query_with_templates(
model_size=model_size,
template_size=template_size,
query=query,
task_description=task_description if task_description.strip() else None,
top_k=top_n
)
# Generate response using Llama3.1 8B model (actual API call)
try:
llama_response = model_prompting(
llm_model="meta/llama-3.1-8b-instruct",
prompt=enhanced_query,
max_token_num=1024, # Changed from 4096 to 1024
temperature=0.0,
top_p=0.9,
stream=True
)
except Exception as e:
llama_response = f"[API Error] Unable to generate response: {str(e)}\n\nEnhanced Query: {enhanced_query}"
# Create template information display
template_info = f"""
## 🧠 Used Thought Templates
**Template Style**: {template_style}
**Number of Templates**: {len(retrieved_templates)}
**Benchmark Task**: {task_description if task_description.strip() else 'All Tasks'}
**API Model**: meta/llama-3.1-8b-instruct
**Status**: {'✅ API call successful' if 'API Error' not in llama_response else '⚠️ API call failed'}
### Retrieved Templates:
"""
for template in retrieved_templates:
template_info += f"""
**Template {template['index']}** (Similarity: {template['similarity_score']:.4f}):
- **Query**: {template['query']}
- **Task**: {template['task_description']}
- **Template**: {template['thought_template']}
"""
return enhanced_query, template_info, llama_response
except Exception as e:
error_msg = f"Error processing thought template query: {str(e)}"
return error_msg, "", ""
# Test function to verify dropdown functionality
def test_dropdown_functionality():
"""Test function to verify dropdown components are working"""
print("Testing dropdown functionality...")
# Test template style mapping
style_mapping = {
"8b_full": ("8b", "full"),
"8b_small": ("8b", "small"),
"70b_full": ("70b", "full"),
"70b_small": ("70b", "small")
}
for style, (model_size, template_size) in style_mapping.items():
print(f"✅ Template style '{style}' maps to model_size='{model_size}', template_size='{template_size}'")
# Test benchmark task options
benchmark_tasks = [
("All Tasks", ""),
("ARC-Challenge", "ARC-Challenge"),
("BoolQ", "BoolQ"),
("CommonsenseQA", "CommonsenseQA"),
("GPQA", "GPQA"),
("GSM8K", "GSM8K"),
("HellaSwag", "HellaSwag"),
("HumanEval", "HumanEval"),
("MATH", "MATH"),
("MBPP", "MBPP"),
("MMLU", "MMLU"),
("Natural Questions", "Natural Questions"),
("OpenBookQA", "OpenBookQA"),
("SQuAD", "SQuAD"),
("TriviaQA", "TriviaQA")
]
print(f"✅ {len(benchmark_tasks)} benchmark task options available")
return True
# Run test on import
if __name__ == "__main__":
test_dropdown_functionality()
else:
# Run test when module is imported
try:
test_dropdown_functionality()
except Exception as e:
print(f"Warning: Dropdown functionality test failed: {e}")
# Create Gradio interface
def create_interface():
with gr.Blocks(
title="GNN-LLM System with Prompt Templates",
theme=gr.themes.Soft(),
css="""
/* Theme-robust CSS with CSS variables */
:root {
--primary-color: #4CAF50;
--secondary-color: #ff6b6b;
--success-color: #28a745;
--info-color: #17a2b8;
--warning-color: #ffc107;
--danger-color: #dc3545;
/* Light theme colors */
--bg-primary: #ffffff;
--bg-secondary: #f8f9fa;
--bg-info: #f0f8ff;
--bg-template: #fff5f5;
--text-primary: #212529;
--text-secondary: #6c757d;
--border-color: #dee2e6;
--shadow-color: rgba(0, 0, 0, 0.1);
}
/* Dark theme colors */
[data-theme="dark"] {
--bg-primary: #1a1a1a;
--bg-secondary: #2d2d2d;
--bg-info: #1a2332;
--bg-template: #2d1a1a;
--text-primary: #ffffff;
--text-secondary: #b0b0b0;
--border-color: #404040;
--shadow-color: rgba(255, 255, 255, 0.1);
}
/* Auto-detect system theme */
@media (prefers-color-scheme: dark) {
:root {
--bg-primary: #1a1a1a;
--bg-secondary: #2d2d2d;
--bg-info: #1a2332;
--bg-template: #2d1a1a;
--text-primary: #ffffff;
--text-secondary: #b0b0b0;
--border-color: #404040;
--shadow-color: rgba(255, 255, 255, 0.1);
}
}
/* Manual theme toggle support */
.theme-light {
--bg-primary: #ffffff;
--bg-secondary: #f8f9fa;
--bg-info: #f0f8ff;
--bg-template: #fff5f5;
--text-primary: #212529;
--text-secondary: #6c757d;
--border-color: #dee2e6;
--shadow-color: rgba(0, 0, 0, 0.1);
}
.theme-dark {
--bg-primary: #1a1a1a;
--bg-secondary: #2d2d2d;
--bg-info: #1a2332;
--bg-template: #2d1a1a;
--text-primary: #ffffff;
--text-secondary: #b0b0b0;
--border-color: #404040;
--shadow-color: rgba(255, 255, 255, 0.1);
}
/* Theme toggle button styling */
.theme-toggle {
position: fixed;
top: 20px;
right: 20px;
z-index: 1000;
background: var(--bg-secondary);
border: 2px solid var(--border-color);
border-radius: 50%;
width: 50px;
height: 50px;
display: flex;
align-items: center;
justify-content: center;
cursor: pointer;
transition: all 0.3s ease;
box-shadow: 0 2px 8px var(--shadow-color);
}
.theme-toggle:hover {
transform: scale(1.1);
box-shadow: 0 4px 16px var(--shadow-color);
}
.theme-toggle:active {
transform: scale(0.95);
}
.gradio-container {
max-width: 1200px !important;
}
/* Theme-robust selection info box */
.selection-info {
background-color: var(--bg-info);
color: var(--text-primary);
padding: 15px;
border-radius: 10px;
border-left: 4px solid var(--primary-color);
box-shadow: 0 2px 4px var(--shadow-color);
transition: all 0.3s ease;
}
.selection-info:hover {
box-shadow: 0 4px 8px var(--shadow-color);
transform: translateY(-1px);
}
/* Theme-robust template info box */
.template-info {
background-color: var(--bg-template);
color: var(--text-primary);
padding: 15px;
border-radius: 10px;
border-left: 4px solid var(--secondary-color);
box-shadow: 0 2px 4px var(--shadow-color);
transition: all 0.3s ease;
}
.template-info:hover {
box-shadow: 0 4px 8px var(--shadow-color);
transform: translateY(-1px);
}
/* Enhanced button styling */
.enhanced-button {
transition: all 0.3s ease;
border-radius: 8px;
font-weight: 500;
}
.enhanced-button:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px var(--shadow-color);
}
/* Card-like containers */
.card-container {
background-color: var(--bg-secondary);
border: 1px solid var(--border-color);
border-radius: 12px;
padding: 20px;
margin: 10px 0;
box-shadow: 0 2px 8px var(--shadow-color);
transition: all 0.3s ease;
}
.card-container:hover {
box-shadow: 0 4px 16px var(--shadow-color);
transform: translateY(-2px);
}
/* Status indicators */
.status-success {
color: var(--success-color);
font-weight: 500;
}
.status-info {
color: var(--info-color);
font-weight: 500;
}
/* Responsive design improvements */
@media (max-width: 768px) {
.gradio-container {
max-width: 100% !important;
padding: 10px;
}
.card-container {
padding: 15px;
margin: 5px 0;
}
}
/* Accessibility improvements */
.sr-only {
position: absolute;
width: 1px;
height: 1px;
padding: 0;
margin: -1px;
overflow: hidden;
clip: rect(0, 0, 0, 0);
white-space: nowrap;
border: 0;
}
/* Focus indicators for better accessibility */
button:focus,
input:focus,
textarea:focus,
select:focus {
outline: 2px solid var(--primary-color);
outline-offset: 2px;
}
/* Theme-robust Markdown content */
.markdown-content {
color: var(--text-primary);
}
.markdown-content h1,
.markdown-content h2,
.markdown-content h3,
.markdown-content h4,
.markdown-content h5,
.markdown-content h6 {
color: var(--text-primary);
border-bottom: 1px solid var(--border-color);
padding-bottom: 8px;
margin-top: 20px;
margin-bottom: 15px;
}
.markdown-content p {
color: var(--text-secondary);
line-height: 1.6;
margin-bottom: 12px;
}
.markdown-content ul,
.markdown-content ol {
color: var(--text-secondary);
padding-left: 20px;
}
.markdown-content li {
margin-bottom: 8px;
color: var(--text-secondary);
}
.markdown-content strong,
.markdown-content b {
color: var(--text-primary);
font-weight: 600;
}
.markdown-content code {
background-color: var(--bg-secondary);
color: var(--text-primary);
padding: 2px 6px;
border-radius: 4px;
border: 1px solid var(--border-color);
font-family: 'Courier New', monospace;
}
.markdown-content pre {
background-color: var(--bg-secondary);
border: 1px solid var(--border-color);
border-radius: 8px;
padding: 15px;
overflow-x: auto;
margin: 15px 0;
}
.markdown-content pre code {
background: none;
border: none;
padding: 0;
}
/* Enhanced template info styling */
.template-info {
background-color: var(--bg-template);
color: var(--text-primary);
padding: 20px;
border-radius: 12px;
border-left: 4px solid var(--secondary-color);
box-shadow: 0 2px 8px var(--shadow-color);
transition: all 0.3s ease;
margin: 15px 0;
}
.template-info:hover {
box-shadow: 0 4px 16px var(--shadow-color);
transform: translateY(-2px);
}
.template-info h3 {
color: var(--text-primary);
margin-top: 0;
margin-bottom: 15px;
font-size: 1.3em;
}
.template-info p {
color: var(--text-secondary);
margin-bottom: 0;
line-height: 1.5;
}
/* Accordion styling for theme support */
.accordion-content {
background-color: var(--bg-secondary);
border: 1px solid var(--border-color);
border-radius: 8px;
padding: 20px;
margin: 10px 0;
}
/* Tab styling improvements */
.tab-nav {
border-bottom: 2px solid var(--border-color);
margin-bottom: 20px;
}
.tab-nav button {
background-color: var(--bg-secondary);
color: var(--text-secondary);
border: none;
padding: 12px 20px;
margin-right: 5px;
border-radius: 8px 8px 0 0;
transition: all 0.3s ease;
}
.tab-nav button.active {
background-color: var(--primary-color);
color: white;
}
.tab-nav button:hover {
background-color: var(--bg-info);
color: var(--text-primary);
}
/* Equal height columns and consistent UI design */
.equal-height-columns {
display: flex;
align-items: stretch;
}
.equal-height-columns > .column {
display: flex;
flex-direction: column;
}
.equal-height-columns .card-container {
height: 100%;
display: flex;
flex-direction: column;
}
.equal-height-columns .card-container > * {
flex: 1;
}
.equal-height-columns .card-container textarea,
.equal-height-columns .card-container .textbox {
flex: 1;
min-height: 200px;
}
.equal-height-columns .card-container .textbox textarea {
height: 100% !important;
min-height: 200px !important;
resize: vertical;
overflow-y: auto !important;
word-wrap: break-word !important;
white-space: pre-wrap !important;
}
/* Force textbox to show content properly */
.equal-height-columns .card-container .textbox {
min-height: 250px;
display: flex;
flex-direction: column;
}
.equal-height-columns .card-container .textbox > div {
flex: 1;
display: flex;
flex-direction: column;
}
.equal-height-columns .card-container .textbox > div > textarea {
flex: 1;
height: auto !important;
min-height: 200px !important;
}
/* Ensure Enhanced Query textbox fills available height */
.equal-height-columns .card-container .textbox[data-testid*="enhanced"] {
height: 100%;
}
.equal-height-columns .card-container .textbox[data-testid*="enhanced"] textarea {
height: 100% !important;
min-height: 300px !important;
resize: vertical;
}
/* Consistent section styling */
.content-section {
background-color: var(--bg-secondary);
border: 1px solid var(--border-color);
border-radius: 12px;
padding: 20px;
margin: 10px 0;
box-shadow: 0 2px 8px var(--shadow-color);
transition: all 0.3s ease;
}
.content-section:hover {
box-shadow: 0 4px 16px var(--shadow-color);
transform: translateY(-2px);
}
.content-section h3 {
color: var(--text-primary);
margin-top: 0;
margin-bottom: 15px;
font-size: 1.2em;
border-bottom: 1px solid var(--border-color);
padding-bottom: 8px;
}
"""
) as demo:
gr.Markdown("""
# 🚀 LLM RoutePilot
This system uses an advanced Graph Neural Network (GNN) router to analyze your query and automatically selects the most suitable Large Language Model (LLM) from a pool of 10+ models to answer your questions.
## 📋 System Features:
- 🧠 **Advanced Graph Router**: Sophisticated GNN-based routing system with 10+ LLM options
- 🎯 **Intelligent Selection**: Analyzes query content, task type, and domain to choose optimal LLM
- 📊 **Cost-Performance Optimization**: Routes based on cost and performance trade-offs
- 🎨 **Prompt Templates**: Use structured templates for specialized responses
- ⚡ **Real-time Processing**: Fast response to user queries
- 🌙 **Theme Support**: Automatically adapts to light and dark themes
- 🔄 **Fallback System**: Graceful degradation if advanced routing fails
""", elem_classes=["markdown-content"])
# Theme toggle button
gr.HTML("""
🌙
""")
with gr.Tabs():
# Original Tab - GNN-LLM System
with gr.TabItem("🤖 Advanced Graph Router"):
with gr.Row():
with gr.Column(scale=2):
with gr.Group(elem_classes=["card-container"]):
query_input = gr.Textbox(
label="💬 Enter Your Question",
placeholder="Please enter the question you want to ask...",
lines=3,
max_lines=5
)
submit_btn = gr.Button(
"🔍 Submit Query",
variant="primary",
scale=1,
elem_classes=["enhanced-button"]
)
with gr.Column(scale=3):
with gr.Group(elem_classes=["card-container"]):
selection_output = gr.Textbox(
label="🎯 Graph Router Analysis",
lines=3,
max_lines=5,
interactive=False
)
with gr.Row():
with gr.Group(elem_classes=["card-container"]):
response_output = gr.Textbox(
label="💭 AI Response",
lines=8,
max_lines=15,
interactive=False
)
# Event handling
submit_btn.click(
fn=process_query,
inputs=[query_input],
outputs=[response_output, selection_output],
show_progress=True
)
query_input.submit(
fn=process_query,
inputs=[query_input],
outputs=[response_output, selection_output],
show_progress=True
)
# New Tab - Thought Template Assistant
with gr.TabItem("🧠 Thought Template Assistant"):
gr.Markdown("""
### 🧠 Thought Template System with Similarity Search
This system uses embedding-based similarity search to find the most relevant thought templates for your query.
It then generates a structured thought prompt and provides a response using Llama3.1 8B model.
""", elem_classes=["template-info"])
with gr.Row(elem_classes=["equal-height-columns"]):
with gr.Column(scale=1, elem_classes=["column"]):
with gr.Group(elem_classes=["card-container"]):
thought_query_input = gr.Textbox(
label="💬 Enter Your Question",
placeholder="Please enter the question you want to analyze with thought templates...",
lines=3,
max_lines=5
)
thought_template_style = gr.Dropdown(
label="📚 Select Template Style",
choices=[
("8B Full Templates", "8b_full"),
("8B Small Templates", "8b_small"),
("70B Full Templates", "70b_full"),
("70B Small Templates", "70b_small")
],
value="8b_full"
)
thought_task_description = gr.Dropdown(
label="🏆 Benchmark Task (Optional)",
choices=[
("All Tasks", ""),
("ARC-Challenge", "ARC-Challenge"),
("BoolQ", "BoolQ"),
("CommonsenseQA", "CommonsenseQA"),
("GPQA", "GPQA"),
("GSM8K", "GSM8K"),
("HellaSwag", "HellaSwag"),
("HumanEval", "HumanEval"),
("MATH", "MATH"),
("MBPP", "MBPP"),
("MMLU", "MMLU"),
("Natural Questions", "Natural Questions"),
("OpenBookQA", "OpenBookQA"),
("SQuAD", "SQuAD"),
("TriviaQA", "TriviaQA")
],
value="",
info="Select a specific benchmark task to filter templates, or leave as 'All Tasks' to search across all tasks"
)
thought_top_n = gr.Slider(
label="🔍 Number of Similar Templates",
minimum=1,
maximum=10,
value=3,
step=1,
info="Number of most similar templates to retrieve"
)
thought_submit_btn = gr.Button(
"🧠 Generate Thought Template",
variant="primary",
elem_classes=["enhanced-button"]
)
with gr.Row():
with gr.Group(elem_classes=["content-section"]):
enhanced_query_output = gr.Textbox(
label="📝 Enhanced Query",
lines=15,
max_lines=25,
interactive=False
)
with gr.Row():
with gr.Group(elem_classes=["content-section"]):
llama_response_output = gr.Textbox(
label="🤖 Llama3.1 8B Response",
lines=15,
max_lines=25,
interactive=False
)
with gr.Row():
with gr.Group(elem_classes=["content-section"]):
thought_templates_output = gr.Textbox(
label="🧠 Used Thought Templates",
lines=15,
max_lines=25,
interactive=False
)
# Event handling for thought template
thought_submit_btn.click(
fn=process_thought_template_query,
inputs=[thought_query_input, thought_template_style, thought_task_description, thought_top_n],
outputs=[enhanced_query_output, thought_templates_output, llama_response_output],
show_progress=True
)
thought_query_input.submit(
fn=process_thought_template_query,
inputs=[thought_query_input, thought_template_style, thought_task_description, thought_top_n],
outputs=[enhanced_query_output, thought_templates_output, llama_response_output],
show_progress=True
)
# Add system information
with gr.Accordion("System Information", open=False):
gr.Markdown("""
### Technical Architecture:
- **Advanced Graph Router**: Sophisticated Graph Neural Network built with PyTorch Geometric
- **Multi-Model Pool**: Access to 10+ different LLM models with varying capabilities
- **Intelligent Routing**: Analyzes query embeddings, task descriptions, and performance metrics
- **Cost-Performance Optimization**: Routes based on cost and performance trade-offs
- **Feature Extraction**: Converts query text to graph structure for advanced analysis
- **LLM Integration**: Supports API calls to various large language models via NVIDIA API
- **Prompt Templates**: Structured templates for specialized responses
- **Thought Templates**: Embedding-based similarity search for reasoning guidance
- **Interface Framework**: Interactive web interface built with Gradio
- **Theme Support**: Automatically adapts to light and dark themes
### Available LLM Models (10+ Models):
- **Small Models (7B-12B)**: Fast, cost-effective for simple tasks
- Llama-3.1-8B-Instruct, Qwen2.5-7B-Instruct, Granite-3.0-8B-Instruct
- Gemma-7B, CodeGemma-7B, Mistral-7B-Instruct-v0.3
- **Medium Models (12B-51B)**: Balanced performance and cost
- Mistral-Nemo-12B-Instruct, Llama3-ChatQA-1.5-8B
- Granite-34B-Code-Instruct, Mixtral-8x7B-Instruct-v0.1
- **Large Models (51B-122B)**: High performance for complex tasks
- Llama-3.3-Nemotron-Super-49B-v1, Llama-3.1-Nemotron-51B-Instruct
- Llama3-ChatQA-1.5-70B, Llama-3.1-70B-Instruct
- DeepSeek-R1 (671B), Mixtral-8x22B-Instruct-v0.1, Palmyra-Creative-122B
### Routing Scenarios:
- **Performance First**: Prioritizes model performance over cost
- **Balance**: Balances performance and cost considerations
- **Cost First**: Prioritizes cost-effectiveness over performance
### Available Templates:
- **💻 Code Assistant**: Programming and development tasks
- **📚 Academic Tutor**: Educational content and learning assistance
- **💼 Business Consultant**: Strategic business analysis
- **✍️ Creative Writer**: Creative writing and content creation
- **🔬 Research Analyst**: Research and analysis tasks
- **🎨 Custom Template**: Define your own prompt structure
### Thought Template Styles:
- **8B Full Templates**: Comprehensive templates for 8B model reasoning
- **8B Small Templates**: Condensed templates for 8B model reasoning
- **70B Full Templates**: Comprehensive templates for 70B model reasoning
- **70B Small Templates**: Condensed templates for 70B model reasoning
### Available Benchmark Tasks:
- **ARC-Challenge**: AI2 Reasoning Challenge
- **BoolQ**: Boolean Questions
- **CommonsenseQA**: Commonsense Question Answering
- **GPQA**: Graduate-Level Physics Questions
- **GSM8K**: Grade School Math 8K
- **HellaSwag**: HellaSwag Dataset
- **HumanEval**: Human Evaluation
- **MATH**: Mathematics Dataset
- **MBPP**: Mostly Basic Python Problems
- **MMLU**: Massive Multitask Language Understanding
- **Natural Questions**: Natural Questions Dataset
- **OpenBookQA**: Open Book Question Answering
- **SQuAD**: Stanford Question Answering Dataset
- **TriviaQA**: Trivia Question Answering
### Usage Instructions:
1. **Advanced Graph Router**: Use the first tab for queries with sophisticated GNN-based routing across 10+ LLMs
2. **Thought Template Assistant**: Use the second tab for embedding-based similarity search with Llama3.1 8B model (no routing)
3. System automatically analyzes your query and selects the optimal LLM based on content, task type, and cost-performance trade-offs
4. View detailed routing information including selected model, task description, and routing method
5. Get enhanced responses with thought templates (tab 2)
6. **Theme Support**: The interface automatically adapts to your system's theme preference
7. **Fallback System**: If advanced routing fails, the system gracefully falls back to a default model
""", elem_classes=["markdown-content"])
return demo
# Launch application
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True,
debug=True
)