File size: 80,877 Bytes
41b743c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
937d315
41b743c
 
 
937d315
41b743c
 
 
c7cb95e
 
41b743c
937d315
 
41b743c
c7cb95e
 
937d315
41b743c
 
 
937d315
 
41b743c
 
 
 
 
bcd9cc2
 
 
 
 
 
 
 
 
 
 
41b743c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ffb560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b27a429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ffb560
 
 
 
 
5f99700
 
1ffb560
 
 
 
 
 
5f99700
1ffb560
 
 
 
 
 
 
 
 
 
 
41b743c
5f99700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41b743c
 
 
c580078
41b743c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f99700
 
 
41b743c
 
1ffb560
 
 
b27a429
 
5109da8
1ffb560
 
 
41b743c
1ffb560
5f99700
41b743c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ffb560
 
 
 
 
 
 
 
 
 
 
 
 
41b743c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3468847
41b743c
 
 
3468847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41b743c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3468847
 
 
 
 
41b743c
 
 
 
 
 
 
 
 
 
3468847
41b743c
3468847
41b743c
 
 
 
 
 
 
 
 
3468847
41b743c
3468847
41b743c
 
 
 
 
 
3468847
 
41b743c
 
 
 
 
 
 
 
3468847
 
 
 
 
41b743c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c580078
41b743c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c580078
41b743c
 
 
 
 
 
 
 
 
be0b6e7
41b743c
 
 
 
 
 
 
 
 
 
 
61f8b5c
41b743c
61f8b5c
41b743c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be0b6e7
 
 
 
41b743c
be0b6e7
41b743c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61f8b5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41b743c
 
 
61f8b5c
41b743c
 
 
 
61f8b5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41b743c
 
 
 
 
 
 
 
 
 
 
 
 
 
61f8b5c
 
41b743c
 
 
 
 
 
 
 
 
 
61f8b5c
 
41b743c
 
 
 
 
 
 
 
 
 
 
 
 
5f99700
 
 
 
 
 
 
41b743c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c580078
41b743c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c580078
41b743c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3468847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41b743c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
966630b
 
41b743c
 
 
 
 
 
 
966630b
 
41b743c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
"""
GNN-LLM Intelligent Selection System - Standalone Application

This is a standalone demo application that integrates actual API calls to NVIDIA's model serving platform.
All dependencies are self-contained within this file - no external imports required.

Features:
- Real API calls to NVIDIA's model serving platform
- Self-contained model_prompting function implementation
- Model mapping for different LLM types
- Error handling with fallback mechanisms
- Progress tracking and status updates
- Thought template integration with similarity search
- GNN-based LLM selection system
- Interactive Gradio web interface

Dependencies:
- Standard Python packages (torch, gradio, transformers, etc.)
- NVIDIA API access (configured in the client)
- No local model files or external scripts required
"""

import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import GCNConv, global_mean_pool
from torch_geometric.data import Data, Batch
import numpy as np
from transformers import pipeline, LongformerModel, LongformerTokenizer
import requests
import json
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
from typing import List, Tuple, Dict, Optional, Union
import os
from datasets import load_dataset
from openai import OpenAI

# Graph Router Integration Imports
import sys
import yaml
from transformers import LongformerTokenizer as RouterTokenizer, LongformerModel as RouterModel

# Load environment variables from .env file (for local development only)
try:
    from dotenv import load_dotenv
    load_dotenv()
    print("βœ… .env file loaded successfully (local development)")
except ImportError:
    print("Warning: python-dotenv not installed. Install with: pip install python-dotenv")
    print("Or set NVIDIA_API_KEY environment variable manually")
except FileNotFoundError:
    print("ℹ️  No .env file found - using environment variables directly")

# Check for API key
if os.getenv("NVIDIA_API_KEY") is None:
    print("❌ NVIDIA_API_KEY not found in environment variables")
    print("For local development: Create a .env file with: NVIDIA_API_KEY=your_api_key_here")
    print("For Hugging Face Spaces: Set NVIDIA_API_KEY in Repository Secrets")
    print("⚠️  Some features will be limited without API access")
else:
    print("βœ… NVIDIA API key loaded from environment")

NVIDIA_BASE_URL = "https://integrate.api.nvidia.com/v1"

# Add GraphRouter_eval to path
sys.path.append(os.path.join(os.path.dirname(__file__), 'GraphRouter_eval/model'))
sys.path.append(os.path.join(os.path.dirname(__file__), 'GraphRouter_eval/data_processing'))
sys.path.append(os.path.join(os.path.dirname(__file__), 'GraphRouter_eval'))
try:
    # Import the GraphRouter_eval package
    import sys
    import os
    
    # Add the parent directory to Python path so we can import GraphRouter_eval as a package
    current_dir = os.path.dirname(__file__)
    if current_dir not in sys.path:
        sys.path.insert(0, current_dir)
    
    # Import the required modules
    from GraphRouter_eval.model.multi_task_graph_router import graph_router_prediction
    GRAPH_ROUTER_AVAILABLE = True
    print("βœ… Graph router successfully imported")
except ImportError as e:
    print(f"Warning: Graph router not available: {e}")
    GRAPH_ROUTER_AVAILABLE = False

# Set up CUDA device for faster embedding calculations
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
print(f"CUDA device set to: {os.environ.get('CUDA_VISIBLE_DEVICES', 'Not set')}")
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
    print(f"CUDA device count: {torch.cuda.device_count()}")
    print(f"Current CUDA device: {torch.cuda.current_device()}")
    print(f"CUDA device name: {torch.cuda.get_device_name(0)}")

# Initialize OpenAI client for NVIDIA API
def initialize_nvidia_client():
    """Initialize the NVIDIA API client with proper error handling"""
    api_key = os.getenv("NVIDIA_API_KEY")
    if api_key is None:
        print("❌ NVIDIA API key not found. Please create a .env file with your API key")
        print("   For Hugging Face Spaces: Set NVIDIA_API_KEY in Repository Secrets")
        return None
    else:
        try:
            client = OpenAI(
                base_url=NVIDIA_BASE_URL,
                api_key=api_key,
                timeout=60,
                max_retries=2
            )
            print("βœ… NVIDIA API client initialized successfully")
            return client
        except Exception as e:
            print(f"❌ Failed to initialize NVIDIA API client: {e}")
            return None

def validate_api_key(api_key: str) -> dict:
    """Validate the NVIDIA API key format and return detailed analysis"""
    analysis = {
        'valid': True,
        'issues': [],
        'format_ok': False,
        'length_ok': False,
        'charset_ok': False
    }
    
    if not api_key:
        analysis['valid'] = False
        analysis['issues'].append("API key is empty or None")
        return analysis
    
    # Check length (NVIDIA API keys are typically 40-50 characters)
    if len(api_key) < 30 or len(api_key) > 60:
        analysis['length_ok'] = False
        analysis['issues'].append(f"Key length ({len(api_key)}) seems unusual (expected 30-60 chars)")
    else:
        analysis['length_ok'] = True
    
    # Check format (should start with nvapi- or nv-)
    if not (api_key.startswith('nvapi-') or api_key.startswith('nv-')):
        analysis['format_ok'] = False
        analysis['issues'].append("Key should start with 'nvapi-' or 'nv-'")
    else:
        analysis['format_ok'] = True
    
    # Check for whitespace or special characters
    if any(c.isspace() for c in api_key):
        analysis['charset_ok'] = False
        analysis['issues'].append("Key contains whitespace characters")
    elif not all(c.isalnum() or c in '-_' for c in api_key):
        analysis['charset_ok'] = False
        analysis['issues'].append("Key contains invalid characters")
    else:
        analysis['charset_ok'] = True
    
    # Overall validity
    analysis['valid'] = analysis['format_ok'] and analysis['length_ok'] and analysis['charset_ok']
    
    return analysis

# Initialize the client
client = initialize_nvidia_client()

def test_nvidia_api_connection():
    """Test the NVIDIA API connection to verify authentication"""
    current_client = ensure_client_available()
    if current_client is None:
        print("❌ Cannot test API connection - client not initialized")
        return False
    
    try:
        print("πŸ§ͺ Testing NVIDIA API connection...")
        # Make a simple test call
        test_response = current_client.chat.completions.create(
            model="meta/llama-3.1-8b-instruct",
            messages=[{"role": "user", "content": "Hello"}],
            max_tokens=10,
            temperature=0.0,
            stream=False
        )
        print("βœ… NVIDIA API connection test successful")
        return True
    except Exception as e:
        print(f"❌ NVIDIA API connection test failed: {e}")
        return False

def ensure_client_available():
    """Ensure the NVIDIA API client is available, reinitialize if needed"""
    global client
    
    if client is not None:
        return client
    
    # Try to reinitialize the client
    print("πŸ”„ Client not available, attempting to reinitialize...")
    api_key = os.getenv("NVIDIA_API_KEY")
    if api_key:
        client = initialize_nvidia_client()
        if client is not None:
            print("βœ… Client successfully reinitialized")
            return client
        else:
            print("❌ Failed to reinitialize client")
            return None
    else:
        print("❌ No API key available for client initialization")
        return None

def model_prompting(
    llm_model: str,
    prompt: str,
    max_token_num: Optional[int] = 1024,  # Changed from 2048 to 1024
    temperature: Optional[float] = 0.2,
    top_p: Optional[float] = 0.7,
    stream: Optional[bool] = True,
) -> Union[str, None]:
    """
    Get a response from an LLM model using the OpenAI-compatible NVIDIA API.

    Args:
        llm_model: Name of the model to use (e.g., "meta/llama-3.1-8b-instruct")
        prompt: Input prompt text
        max_token_num: Maximum number of tokens to generate
        temperature: Sampling temperature
        top_p: Top-p sampling parameter
        stream: Whether to stream the response

    Returns:
        Generated text response
    """
    # Ensure client is available
    current_client = ensure_client_available()
    if current_client is None:
        raise Exception("NVIDIA API client not initialized. Please check your .env file contains NVIDIA_API_KEY")
    
    # Debug information
    api_key = os.getenv("NVIDIA_API_KEY")
    if api_key:
        print(f"πŸ”‘ API Key available: {api_key[:8]}...{api_key[-4:]}")
        print(f"   Key length: {len(api_key)} characters")

    else:
        print("❌ No API key found in environment")
    
    try:
        print(f"πŸš€ Making API call to model: {llm_model}")
        completion = current_client.chat.completions.create(
            model=llm_model,
            messages=[{"role": "user", "content": prompt}],
            max_tokens=max_token_num,
            temperature=temperature,
            top_p=top_p,
            stream=stream
        )

        response_text = ""
        for chunk in completion:
            if chunk.choices[0].delta.content is not None:
                response_text += chunk.choices[0].delta.content
        
        return response_text
    except Exception as e:
        error_msg = str(e)
        print(f"❌ API call failed: {error_msg}")
        
        # Provide more specific error information
        if "401" in error_msg or "Unauthorized" in error_msg:
            print("πŸ” Authentication Error Details:")
            print(f"   - API Key present: {'Yes' if api_key else 'No'}")
            print(f"   - API Key length: {len(api_key) if api_key else 0}")
            print(f"   - Base URL: {NVIDIA_BASE_URL}")
            print("   - For Hugging Face Spaces: Check if NVIDIA_API_KEY is set in Repository Secrets")
            print("   - For local development: Check if .env file contains NVIDIA_API_KEY")
        
        raise Exception(f"API call failed: {error_msg}")

# Initialize the Longformer model for embeddings (same as enhance_query_with_templates.py)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Device set to use: {device}")

MODEL_NAME = "allenai/longformer-base-4096"

try:
    tokenizer = LongformerTokenizer.from_pretrained(MODEL_NAME)
    model_long = LongformerModel.from_pretrained(MODEL_NAME)
    # Ensure model is on the correct device
    model_long = model_long.to(device)
    print(f"Successfully loaded Longformer model: {MODEL_NAME} on {device}")
except Exception as e:
    print(f"Warning: Could not load Longformer model: {e}")
    tokenizer = None
    model_long = None

def get_longformer_representation(text):
    """
    Get representations of long text using Longformer on CUDA:0 device
    """
    if model_long is None or tokenizer is None:
        raise Exception("Longformer model not available")
    
    # Set model to evaluation mode for faster inference
    model_long.eval()
    
    inputs = tokenizer(text, return_tensors="pt", max_length=4096, truncation=True)
    inputs = {k: v.to(device) for k, v in inputs.items()}

    global_attention_mask = torch.zeros(
        inputs["input_ids"].shape,
        dtype=torch.long,
        device=device
    )
    global_attention_mask[:, 0] = 1

    # Use torch.no_grad() for faster inference and less memory usage
    with torch.no_grad():
        outputs = model_long(
            input_ids=inputs["input_ids"],
            attention_mask=inputs["attention_mask"],
            global_attention_mask=global_attention_mask,
            output_hidden_states=True
        )

    # Move result to CPU and convert to numpy for faster processing
    return outputs.last_hidden_state[0, 0, :].cpu()

def get_embedding(instructions: List[str]) -> np.ndarray:
    """
    Get embeddings for a list of texts using Longformer.
    """
    if model_long is None:
        raise Exception("Longformer model not available")
    
    try:
        embeddings = []
        # Process in batches for better GPU utilization
        batch_size = 4  # Adjust based on GPU memory
        
        for i in range(0, len(instructions), batch_size):
            batch_texts = instructions[i:i + batch_size]
            batch_embeddings = []
            
            for text in batch_texts:
                representation = get_longformer_representation(text)
                batch_embeddings.append(representation.numpy())
            
            embeddings.extend(batch_embeddings)
        
        return np.array(embeddings)
    except Exception as e:
        raise Exception(f"Error generating embeddings: {str(e)}")

def parse_embedding(embedding_str):
    """Parse embedding string to numpy array, handling different formats."""
    if embedding_str is None:
        return None
    if isinstance(embedding_str, np.ndarray):
        return embedding_str
    try:
        if isinstance(embedding_str, str) and 'tensor' in embedding_str:
            clean_str = embedding_str.replace('tensor(', '').replace(')', '')
            if 'device=' in clean_str:
                clean_str = clean_str.split('device=')[0].strip()
            clean_str = clean_str.replace('\n', '').replace(' ', '')
            embedding = np.array(eval(clean_str))
            if embedding.ndim == 2 and embedding.shape[0] == 1:
                embedding = embedding.squeeze(0)
            return embedding
        elif isinstance(embedding_str, str):
            clean_str = embedding_str.replace('[', '').replace(']', '')
            return np.array([float(x) for x in clean_str.split(',') if x.strip()])
        elif isinstance(embedding_str, (int, float)):
            return np.array([embedding_str])
        else:
            return None
    except Exception as e:
        print(f"Error parsing embedding: {str(e)}")
        return None

def get_template_subset_name(model_size: str, template_size: str) -> str:
    """
    Get the HuggingFace dataset subset name based on model size and template size.
    """
    return f"thought_template_{model_size}_{template_size}"

def load_template_dataset(model_size: str, template_size: str) -> pd.DataFrame:
    """
    Load thought templates from HuggingFace dataset with robust error handling for Spaces deployment.
    """
    subset_name = get_template_subset_name(model_size, template_size)
    
    # Try multiple approaches to load the dataset
    approaches = [
        # Approach 1: Direct load with timeout
        lambda: load_dataset("ulab-ai/FusionBench", subset_name, trust_remote_code=True),
        # Approach 2: Load with cache_dir specification
        lambda: load_dataset("ulab-ai/FusionBench", subset_name, cache_dir="./cache", trust_remote_code=True),
        # Approach 3: Load with streaming (for large datasets)
        lambda: load_dataset("ulab-ai/FusionBench", subset_name, streaming=True, trust_remote_code=True),
    ]
    
    for i, approach in enumerate(approaches, 1):
        try:
            print(f"Attempting to load templates (approach {i}): ulab-ai/FusionBench, subset: {subset_name}")
            
            dataset = approach()
            
            # Handle streaming dataset
            if hasattr(dataset, 'iter') and callable(dataset.iter):
                # Convert streaming dataset to list
                data_list = list(dataset['data'])
                template_df = pd.DataFrame(data_list)
            else:
                # Regular dataset
                template_df = pd.DataFrame(dataset['data'])
            
            print(f"βœ… Successfully loaded {len(template_df)} templates from {subset_name}")
            return template_df
            
        except Exception as e:
            print(f"❌ Approach {i} failed: {str(e)}")
            if i == len(approaches):
                # All approaches failed, provide detailed error
                error_msg = f"Failed to load template dataset {subset_name} after trying {len(approaches)} approaches. Last error: {str(e)}"
                print(error_msg)
                
                # Return empty DataFrame with warning
                print("⚠️ Returning empty template DataFrame - functionality will be limited")
                return pd.DataFrame(columns=['query', 'thought_template', 'task_description', 'query_embedding'])
    
    # This should never be reached, but just in case
    return pd.DataFrame(columns=['query', 'thought_template', 'task_description', 'query_embedding'])

def enhance_query_with_templates(
    model_size: str, 
    template_size: str, 
    query: str,
    query_embedding: Optional[np.ndarray] = None,
    task_description: Optional[str] = None,
    top_k: int = 3
) -> Tuple[str, List[Dict]]:
    """
    Enhance a query with thought templates by finding similar templates and creating an enhanced prompt.
    """
    
    if model_size not in ["70b", "8b"]:
        raise ValueError("model_size must be either '70b' or '8b'")
    
    if template_size not in ["full", "small"]:
        raise ValueError("template_size must be either 'full' or 'small'")
    
    # Load template data from HuggingFace dataset
    template_df = load_template_dataset(model_size, template_size)
    
    # Check if dataset is empty (failed to load)
    if template_df.empty:
        print("⚠️ Template dataset is empty - returning original query")
        return query, []
    
    # Generate embedding for the query if not provided
    if query_embedding is None:
        try:
            query_embedding = get_embedding([query])[0]
            print(f"Generated embedding for query: {query[:50]}...")
        except Exception as e:
            print(f"Failed to generate embedding for query: {str(e)}")
            return query, []
    
    # Filter templates by task description if provided
    if task_description is None or not task_description.strip():
        matching_templates = template_df
        print(f"Using all {len(matching_templates)} templates (no task filter)")
    else:
        matching_templates = template_df[template_df['task_description'] == task_description]
        
        if matching_templates.empty:
            task_desc_lower = task_description.lower()
            partial_matches = template_df[template_df['task_description'].str.lower().str.contains(task_desc_lower.split()[0], na=False)]
            
            if not partial_matches.empty:
                matching_templates = partial_matches
                print(f"Found partial matches for task: {task_description[:50]}... ({len(matching_templates)} templates)")
            else:
                print(f"No matching templates found for task: {task_description[:50]}... - using all templates")
                matching_templates = template_df
    
    if matching_templates.empty:
        print("No matching templates found. Returning original query.")
        return query, []
    
    print(f"Processing {len(matching_templates)} templates for similarity calculation...")
    
    # Calculate similarities with template embeddings
    similarities = []
    
    for t_idx, t_row in matching_templates.iterrows():
        template_embedding = None
        
        # Try to parse existing template embedding
        if 'query_embedding' in t_row and not pd.isna(t_row['query_embedding']):
            try:
                template_embedding = parse_embedding(t_row['query_embedding'])
            except Exception as e:
                print(f"Failed to parse template embedding: {str(e)}")
                template_embedding = None
        
        # If no valid embedding found, generate one for the template query
        if template_embedding is None and 'query' in t_row:
            try:
                template_embedding = get_embedding([t_row['query']])[0]
                print(f"Generated embedding for template query: {t_row['query'][:50]}...")
            except Exception as e:
                print(f"Failed to generate embedding for template query: {str(e)}")
                continue
        
        if template_embedding is not None:
            try:
                q_emb = query_embedding.reshape(1, -1)
                t_emb = template_embedding.reshape(1, -1)
                
                if q_emb.shape[1] != t_emb.shape[1]:
                    print(f"Dimension mismatch: query={q_emb.shape[1]}, template={t_emb.shape[1]}")
                    continue
                    
                sim = cosine_similarity(q_emb, t_emb)[0][0]
                similarities.append((t_idx, sim))
            except Exception as e:
                print(f"Error calculating similarity: {str(e)}")
                continue
    
    if not similarities:
        print("No valid similarities found. Returning original query.")
        return query, []
    
    # Sort by similarity (highest first) and get top k
    similarities.sort(key=lambda x: x[1], reverse=True)
    top_n = min(top_k, len(similarities))
    top_indices = [idx for idx, _ in similarities[:top_n]]
    
    top_templates = matching_templates.loc[top_indices]
    
    print(f"Found {len(similarities)} similar templates, selected top {top_n}")
    print(f"Top similarity scores: {[sim for _, sim in similarities[:top_n]]}")
    
    # Create enhanced query
    enhanced_query = "Here are some similar questions and guidelines in how to solve them:\n\n"
    
    retrieved_templates = []
    
    for i, (t_idx, t_row) in enumerate(top_templates.iterrows(), 1):
        enhanced_query += f"Question{i}: {t_row['query']}\n\n"
        enhanced_query += f"Thought Template {i}: {t_row['thought_template']}\n\n"
        
        retrieved_templates.append({
            'index': i,
            'query': t_row['query'],
            'thought_template': t_row['thought_template'],
            'task_description': t_row.get('task_description', ''),
            'similarity_score': similarities[i-1][1] if i-1 < len(similarities) else None
        })
    
    enhanced_query += "Now, please solve the following question:\n\n"
    enhanced_query += query
    enhanced_query += "\n\n Use the thought templates above as guidance. Reason step by step. And provide the final answer! The final answer should be enclosed in <answer> and </answer> tags."
    
    return enhanced_query, retrieved_templates

def load_thought_templates(template_style):
    """
    Load thought templates based on the selected style using HuggingFace datasets.
    """
    # Map template style to model_size and template_size
    style_mapping = {
        "8b_full": ("8b", "full"),
        "8b_small": ("8b", "small"),
        "70b_full": ("70b", "full"),
        "70b_small": ("70b", "small")
    }
    
    if template_style not in style_mapping:
        return None, f"Template style '{template_style}' not found"
    
    model_size, template_size = style_mapping[template_style]
    
    try:
        template_df = load_template_dataset(model_size, template_size)
        return template_df, f"Successfully loaded {len(template_df)} templates from {template_style}"
    except Exception as e:
        return None, f"Error loading templates: {str(e)}"


# GNN network for LLM selection
class LLMSelectorGNN(nn.Module):
    def __init__(self, input_dim, hidden_dim, num_llms):
        super(LLMSelectorGNN, self).__init__()
        self.conv1 = GCNConv(input_dim, hidden_dim)
        self.conv2 = GCNConv(hidden_dim, hidden_dim)
        self.classifier = nn.Linear(hidden_dim, num_llms)
        self.dropout = nn.Dropout(0.2)

    def forward(self, x, edge_index, batch):
        # GNN forward pass
        x = F.relu(self.conv1(x, edge_index))
        x = self.dropout(x)
        x = F.relu(self.conv2(x, edge_index))

        # Graph-level pooling
        x = global_mean_pool(x, batch)

        # Classifier output for LLM selection probabilities
        logits = self.classifier(x)
        return F.softmax(logits, dim=1)


# Model name mapping dictionary
MODEL_MAPPING = {
    "granite-3.0-8b-instruct": "ibm/granite-3.0-8b-instruct",
    "qwen2.5-7b-instruct": "qwen/qwen2.5-7b-instruct",
    "llama-3.1-8b-instruct": "meta/llama-3.1-8b-instruct",
    "mistral-nemo-12b-instruct": "nv-mistralai/mistral-nemo-12b-instruct"
}

def get_mapped_model_name(model_name: str) -> str:
    """Map the input model name to the correct API model name"""
    return MODEL_MAPPING.get(model_name, model_name)

# LLM configurations
LLM_CONFIGS = {
    0: {
        "name": "GPT-3.5 (General Tasks)",
        "description": "Suitable for daily conversations and general text generation",
        "model_type": "openai",
        "api_model": "granite-3.0-8b-instruct"
    },
    1: {
        "name": "Claude (Analysis & Reasoning)",
        "description": "Excels at logical analysis and complex reasoning tasks",
        "model_type": "anthropic",
        "api_model": "qwen2.5-7b-instruct"
    },
    2: {
        "name": "LLaMA (Code Generation)",
        "description": "Specialized model optimized for code generation",
        "model_type": "meta",
        "api_model": "llama-3.1-8b-instruct"
    },
    3: {
        "name": "Gemini (Multimodal)",
        "description": "Supports text, image and other multimodal tasks",
        "model_type": "google",
        "api_model": "mistral-nemo-12b-instruct"
    }
}

# Prompt Templates
PROMPT_TEMPLATES = {
    "code_assistant": "You are an expert programming assistant. Please help with the following coding task:\n\nTask: {query}\n\nRequirements:\n- Provide clean, well-commented code\n- Explain the logic and approach\n- Include error handling where appropriate\n- Suggest best practices\n\nResponse:",

    "academic_tutor": "You are a knowledgeable academic tutor. Please help explain the following topic:\n\nTopic: {query}\n\nPlease provide:\n- Clear, structured explanation\n- Key concepts and definitions\n- Real-world examples or applications\n- Practice questions or exercises if relevant\n\nExplanation:",

    "business_consultant": "You are a strategic business consultant. Please analyze the following business scenario:\n\nScenario: {query}\n\nPlease provide:\n- Situation analysis\n- Key challenges and opportunities\n- Strategic recommendations\n- Implementation considerations\n- Risk assessment\n\nAnalysis:",

    "creative_writer": "You are a creative writing assistant. Please help with the following creative task:\n\nCreative Request: {query}\n\nPlease provide:\n- Original and engaging content\n- Rich descriptions and imagery\n- Appropriate tone and style\n- Creative elements and storytelling techniques\n\nCreative Response:",

    "research_analyst": "You are a thorough research analyst. Please investigate the following topic:\n\nResearch Topic: {query}\n\nPlease provide:\n- Comprehensive overview\n- Key findings and insights\n- Data analysis and trends\n- Reliable sources and references\n- Conclusions and implications\n\nResearch Report:",

    "custom": "{template}\n\nQuery: {query}\n\nResponse:"
}


class GNNLLMSystem:
    def __init__(self):
        # Initialize GNN model
        self.gnn_model = LLMSelectorGNN(input_dim=768, hidden_dim=256, num_llms=4)
        self.load_pretrained_model()

        # Initialize local LLM pipeline (as backup)
        try:
            self.local_llm = pipeline("text-generation",
                                      model="microsoft/DialoGPT-medium",
                                      tokenizer="microsoft/DialoGPT-medium")
        except:
            self.local_llm = None

    def load_pretrained_model(self):
        """Load pretrained GNN model weights"""
        # Load your trained model weights here
        # self.gnn_model.load_state_dict(torch.load('gnn_selector.pth'))
        # For demonstration purposes, we use randomly initialized weights
        pass

    def query_to_graph(self, query):
        """Convert query to graph structure"""
        # This is a simplified implementation, you need to design based on specific requirements
        words = query.lower().split()

        # Create node features (simulated with simple word embeddings)
        vocab_size = 1000
        node_features = []

        for word in words:
            # Simple hash mapping to feature vector
            hash_val = hash(word) % vocab_size
            feature = np.random.randn(768)  # Simulate 768-dim word embedding
            feature[hash_val % 768] += 1.0  # Add some structural information
            node_features.append(feature)

        if len(node_features) == 0:
            node_features = [np.random.randn(768)]

        # Create edge connections (fully connected graph as example)
        num_nodes = len(node_features)
        edge_index = []
        for i in range(num_nodes):
            for j in range(i + 1, num_nodes):
                edge_index.extend([[i, j], [j, i]])

        if len(edge_index) == 0:
            edge_index = [[0, 0]]

        # Convert to PyTorch tensors
        x = torch.FloatTensor(node_features)
        edge_index = torch.LongTensor(edge_index).t().contiguous()

        return Data(x=x, edge_index=edge_index)

    def select_llm(self, query):
        """Use GNN to select the most suitable LLM"""
        # Convert query to graph
        graph_data = self.query_to_graph(query)
        batch = torch.zeros(graph_data.x.size(0), dtype=torch.long)

        # GNN inference
        with torch.no_grad():
            self.gnn_model.eval()
            probabilities = self.gnn_model(graph_data.x, graph_data.edge_index, batch)
            selected_llm_idx = torch.argmax(probabilities, dim=1).item()
            confidence = probabilities[0][selected_llm_idx].item()

        return selected_llm_idx, confidence, probabilities[0].tolist()

    def generate_response(self, query, selected_llm_idx, use_template=False, template_key=None, custom_template=None):
        """Generate response using selected LLM and optional template"""
        llm_config = LLM_CONFIGS[selected_llm_idx]

        # Apply template if requested
        if use_template:
            if template_key == "custom" and custom_template:
                formatted_query = PROMPT_TEMPLATES["custom"].format(template=custom_template, query=query)
            elif template_key in PROMPT_TEMPLATES:
                formatted_query = PROMPT_TEMPLATES[template_key].format(query=query)
            else:
                formatted_query = query
        else:
            formatted_query = query

        try:
            # Get the API model name
            api_model = llm_config.get("api_model", "llama-3.1-8b-instruct")
            mapped_model_name = get_mapped_model_name(api_model)
            
            # Call the actual API
            response = model_prompting(
                llm_model=mapped_model_name,
                prompt=formatted_query,
                max_token_num=1024,  # Changed from 4096 to 1024
                temperature=0.0,
                top_p=0.9,
                stream=True
            )
            
            return response
            
        except Exception as e:
            # Fallback to local LLM or error message
            error_msg = f"API Error: {str(e)}"
            if self.local_llm:
                try:
                    result = self.local_llm(formatted_query, max_length=100, num_return_sequences=1)
                    return result[0]['generated_text']
                except:
                    return f"Sorry, unable to generate response. Error: {error_msg}"
            else:
                return f"Sorry, unable to generate response. Error: {error_msg}"


# Create system instance
gnn_llm_system = GNNLLMSystem()

# LLM Name Mapping from Graph Router to API Models
LLM_NAME_MAPPING = {
    "qwen2-7b-instruct": "qwen/qwen2-7b-instruct",
    "qwen2.5-7b-instruct": "qwen/qwen2.5-7b-instruct",
    "gemma-7b": "google/gemma-7b",
    "codegemma-7b": "google/codegemma-7b",
    "gemma-2-9b-it": "google/gemma-2-9b-it",
    "llama-3.1-8b-instruct": "meta/llama-3.1-8b-instruct",
    "granite-3.0-8b-instruct": "ibm/granite-3.0-8b-instruct",
    "llama3-chatqa-1.5-8b": "nvidia/llama3-chatqa-1.5-8b",
    "mistral-nemo-12b-instruct": "nv-mistralai/mistral-nemo-12b-instruct",
    "mistral-7b-instruct-v0.3": "mistralai/mistral-7b-instruct-v0.3",
    "llama-3.3-nemotron-super-49b-v1": "nvidia/llama-3.3-nemotron-super-49b-v1",
    "llama-3.1-nemotron-51b-instruct": "nvidia/llama-3.1-nemotron-51b-instruct",
    "llama3-chatqa-1.5-70b": "nvidia/llama3-chatqa-1.5-70b",
    "llama-3.1-70b-instruct": "meta/llama3-70b-instruct",
    "llama3-70b-instruct": "meta/llama-3.1-8b-instruct",
    "granite-34b-code-instruct": "ibm/granite-34b-code-instruct",
    "mixtral-8x7b-instruct-v0.1": "mistralai/mixtral-8x7b-instruct-v0.1",
    "deepseek-r1": "deepseek-ai/deepseek-r1",
    "mixtral-8x22b-instruct-v0.1": "mistralai/mixtral-8x22b-instruct-v0.1",
    "palmyra-creative-122b": "writer/palmyra-creative-122b"
}

def map_llm_to_api(llm_name: str) -> str:
    """Map graph router LLM name to API model name"""
    return LLM_NAME_MAPPING.get(llm_name, "meta/llama-3.1-8b-instruct")  # Default fallback

def get_cls_embedding_for_router(text, model_name="allenai/longformer-base-4096", device=None):
    """
    Extracts the [CLS] embedding from a given text using Longformer for router.
    This is a separate function to avoid conflicts with the existing one.
    """
    if device is None:
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    # Load tokenizer and model
    tokenizer = RouterTokenizer.from_pretrained(model_name)
    model = RouterModel.from_pretrained(model_name).to(device)
    model.eval()

    # Tokenize input
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=4096).to(device)

    with torch.no_grad():
        outputs = model(**inputs)
        cls_embedding = outputs.last_hidden_state[:, 0, :]  # (1, hidden_size)

    return cls_embedding

def generate_task_description_for_router(query: str) -> str:
    """
    Generate a concise task description using LLM API for router.
    """
    prompt = f"""Analyze the following query and provide a concise task description that identifies the type of task and domain it belongs to. Focus on the core problem type and relevant domain areas.

Query: {query}

Please provide a brief, focused task description that captures:
1. The primary task type (e.g., mathematical calculation, text analysis, coding, reasoning, etc.)
2. The relevant domain or subject area
3. The complexity level or approach needed

Keep the description concise and informative. Respond with just the task description, no additional formatting."""

    try:
        task_description = model_prompting(
            llm_model="meta/llama-3.1-8b-instruct",
            prompt=prompt,
            max_token_num=1024,  # Changed from 2048 to 1024
            temperature=0.1,
            top_p=0.9,
            stream=True
        )
        return task_description.strip()
    except Exception as e:
        print(f"Warning: Failed to generate task description via API: {str(e)}")
        return "General query processing task requiring analysis and response generation."

def get_routed_llm(query: str, config_path: str = None) -> Tuple[str, str, str]:
    """
    Use graph router to get the best LLM for a query.
    
    Returns:
        Tuple of (routed_llm_name, task_description, selection_info)
    """
    if not GRAPH_ROUTER_AVAILABLE:
        print("Graph router not available, using fallback")
        selection_info = f"""
πŸ”„ **Fallback Mode**: Graph router not available
πŸ€– **Selected LLM**: llama-3.1-8b-instruct (Default)
πŸ”— **API Model**: meta/llama-3.1-8b-instruct
πŸ“ **Task Description**: General query processing
πŸ“‹ **LLM Details**: Meta's 8B Llama-3 series for chat & reasoning; $0.20/M input and $0.20/M output
⚠️ **Note**: Using fallback system due to missing graph router components
        """
        return "llama-3.1-8b-instruct", "General query processing", selection_info
    
    try:
        print(f"Starting graph router analysis for query: {query[:50]}...")
        
        # Store current working directory
        original_cwd = os.getcwd()
        
        # Change to GraphRouter_eval directory for relative paths to work
        graph_router_dir = os.path.join(os.path.dirname(__file__), 'GraphRouter_eval')
        os.chdir(graph_router_dir)
        
        try:
            # Use default config path if none provided
            if config_path is None:
                config_path = 'configs/config.yaml'
            
            # Load configuration
            with open(config_path, 'r', encoding='utf-8') as file:
                config = yaml.safe_load(file)
            
            # Load training data
            train_df = pd.read_csv(config['train_data_path'])
            train_df = train_df[train_df["task_name"] != 'quac']
            print(f"Loaded {len(train_df)} training samples")
            
            # Generate embeddings for the query
            print("Generating query embeddings...")
            user_query_embedding = get_cls_embedding_for_router(query).squeeze(0)
            
            # Generate task description
            print("Generating task description...")
            user_task_description = generate_task_description_for_router(query)
            print(f"Task description: {user_task_description}")
            
            # Generate embeddings for the task description
            print("Generating task description embeddings...")
            user_task_embedding = get_cls_embedding_for_router(user_task_description).squeeze(0)
            
            # Prepare test dataframe
            test_df = train_df.head(config['llm_num']).copy()
            test_df['query'] = query
            test_df['task_description'] = user_task_description
            test_df.loc[0, 'query_embedding'] = str(user_query_embedding)
            test_df.loc[0, 'task_description'] = str(user_task_embedding)
            
            # Run graph router prediction
            print("Running graph router prediction...")
            router = graph_router_prediction(
                router_data_train=train_df,
                router_data_test=test_df,
                llm_path=config['llm_description_path'],
                llm_embedding_path=config['llm_embedding_path'],
                config=config
            )
            
            # Get the routed LLM name
            routed_llm_name = router.test_GNN()
            print(f"Graph router selected: {routed_llm_name}")
            
            # Load LLM descriptions to get detailed information
            try:
                with open(config['llm_description_path'], 'r', encoding='utf-8') as f:
                    llm_descriptions = json.load(f)
                
                # Get LLM details
                llm_info = llm_descriptions.get(routed_llm_name, {})
                llm_feature = llm_info.get('feature', 'No description available')
                input_price = llm_info.get('input_price', 'Unknown')
                output_price = llm_info.get('output_price', 'Unknown')
                
                # Determine if it's a think mode model
                think_mode = routed_llm_name.endswith('_think')
                base_model_name = routed_llm_name[:-6] if think_mode else routed_llm_name
                
                # Create detailed selection info with enhanced LLM information
                api_model = map_llm_to_api(routed_llm_name)
                selection_info = f"""
🎯 **Graph Router Analysis Complete**

πŸ€– **Selected LLM**: {routed_llm_name}
πŸ”— **API Model**: {api_model}
πŸ“ **Task Description**: {user_task_description}
βœ… **Routing Method**: Advanced Graph Neural Network
πŸ“Š **Analysis**: Query analyzed for optimal model selection
⚑ **Performance**: Cost-performance optimized routing

**πŸ“‹ LLM Details:**
β€’ **Model**: {base_model_name}
β€’ **Mode**: {'Think Mode (Step-by-step reasoning)' if think_mode else 'Standard Mode'}
β€’ **Features**: {llm_feature}
β€’ **Pricing**: ${input_price}/M input tokens, ${output_price}/M output tokens
β€’ **Provider**: {api_model.split('/')[0] if '/' in api_model else 'Unknown'}

**🎯 Selection Rationale:**
The Graph Neural Network analyzed your query and determined this model provides the best balance of performance, cost, and capability for your specific task type.
                """
            except Exception as e:
                print(f"Warning: Could not load LLM descriptions: {e}")
                # Fallback to basic information
                api_model = map_llm_to_api(routed_llm_name)
                selection_info = f"""
🎯 **Graph Router Analysis Complete**

πŸ€– **Selected LLM**: {routed_llm_name}
πŸ”— **API Model**: {api_model}
πŸ“ **Task Description**: {user_task_description}
βœ… **Routing Method**: Advanced Graph Neural Network
πŸ“Š **Analysis**: Query analyzed for optimal model selection
⚑ **Performance**: Cost-performance optimized routing
                """
            
            return routed_llm_name, user_task_description, selection_info
            
        finally:
            # Restore original working directory
            os.chdir(original_cwd)
        
    except FileNotFoundError as e:
        print(f"Configuration file not found: {e}")
        selection_info = f"""
❌ **Configuration Error**: {str(e)}
πŸ”„ **Fallback**: Using default LLM
πŸ€– **Selected LLM**: llama-3.1-8b-instruct (Default)
πŸ”— **API Model**: meta/llama-3.1-8b-instruct
πŸ“ **Task Description**: General query processing
πŸ“‹ **LLM Details**: Meta's 8B Llama-3 series for chat & reasoning; $0.20/M input and $0.20/M output
        """
        return "llama-3.1-8b-instruct", "General query processing", selection_info
        
    except Exception as e:
        print(f"Error in graph router: {str(e)}")
        selection_info = f"""
❌ **Graph Router Error**: {str(e)}
πŸ”„ **Fallback**: Using default LLM
πŸ€– **Selected LLM**: llama-3.1-8b-instruct (Default)
πŸ”— **API Model**: meta/llama-3.1-8b-instruct
πŸ“ **Task Description**: General query processing
πŸ“‹ **LLM Details**: Meta's 8B Llama-3 series for chat & reasoning; $0.20/M input and $0.20/M output
⚠️ **Note**: Advanced routing failed, using fallback system
        """
        return "llama-3.1-8b-instruct", "General query processing", selection_info


def process_query(query):
    """Main function to process user queries using Graph Router"""
    if not query.strip():
        return "Please enter your question", ""

    try:
        print(f"Processing query: {query[:50]}...")
        
        # Check client availability before processing
        print("πŸ” Checking client availability...")
        current_client = ensure_client_available()
        if current_client is None:
            raise Exception("NVIDIA API client not available. Please check your API key configuration.")
        print("βœ… Client available for processing")
        
        # Use Graph Router to select the best LLM
        routed_llm_name, task_description, selection_info = get_routed_llm(query)
        print(f"Graph router selected: {routed_llm_name}")
        
        # Check if the routed LLM name has "_think" suffix
        think_mode = False
        actual_llm_name = routed_llm_name
        
        if routed_llm_name.endswith("_think"):
            think_mode = True
            actual_llm_name = routed_llm_name[:-6]  # Remove "_think" suffix
            print(f"Think mode detected. Actual model: {actual_llm_name}")
        
        # Map the actual LLM name to API model name
        api_model = map_llm_to_api(actual_llm_name)
        print(f"Mapped to API model: {api_model}")
        
        # Prepare the prompt - append "please think step by step" if in think mode
        final_prompt = query
        if think_mode:
            final_prompt = query + "\n\nPlease think step by step."
            print("Added 'please think step by step' to the prompt")
        
        # Generate response using the routed LLM
        print("Generating response...")
        response = model_prompting(
            llm_model=api_model,
            prompt=final_prompt,
            max_token_num=1024,  # Changed from 4096 to 1024
            temperature=0.0,
            top_p=0.9,
            stream=True
        )
        print("Response generated successfully")
        
        # Update selection info to show think mode if applicable
        if think_mode:
            selection_info = selection_info.replace(
                f"πŸ€– **Selected LLM**: {routed_llm_name}",
                f"πŸ€– **Selected LLM**: {actual_llm_name} (Think Mode)"
            )
            selection_info = selection_info.replace(
                f"πŸ”— **API Model**: {api_model}",
                f"πŸ”— **API Model**: {api_model}\n🧠 **Mode**: Step-by-step reasoning enabled"
            )
        
    except Exception as e:
        print(f"Error in process_query: {str(e)}")
        response = f"Error generating response: {str(e)}"
        # Update selection info to show error
        selection_info = f"""
❌ **Processing Error**: {str(e)}
πŸ”„ **Fallback**: Using default response
⚠️ **Note**: An error occurred during processing
        """

    return response, selection_info


def process_template_query(query, template_type, custom_template):
    """Process query using prompt template"""
    if not query.strip():
        return "Please enter your question", "", ""

    # Use GNN to select LLM
    selected_llm_idx, confidence, all_probabilities = gnn_llm_system.select_llm(query)

    # Generate selection information
    selected_llm_info = LLM_CONFIGS[selected_llm_idx]

    template_names = {
        "code_assistant": "πŸ’» Code Assistant",
        "academic_tutor": "πŸ“š Academic Tutor",
        "business_consultant": "πŸ’Ό Business Consultant",
        "creative_writer": "✍️ Creative Writer",
        "research_analyst": "πŸ”¬ Research Analyst",
        "custom": "🎨 Custom Template"
    }

    selection_info = f"""
🎯 **Template Used**: {template_names.get(template_type, template_type)}
πŸ€– **Selected LLM**: {selected_llm_info['name']}
πŸ“ **Reason**: {selected_llm_info['description']}
🎯 **Confidence**: {confidence:.2%}
πŸ”— **API Model**: {selected_llm_info.get('api_model', 'Unknown')}

**Selection Probabilities for All LLMs**:
"""

    for i, prob in enumerate(all_probabilities):
        llm_name = LLM_CONFIGS[i]['name']
        selection_info += f"- {llm_name}: {prob:.2%}\n"

    # Generate response using template
    try:
        response = gnn_llm_system.generate_response(
            query, selected_llm_idx, use_template=True,
            template_key=template_type, custom_template=custom_template
        )
        status_message = '<div class="status-success">βœ… Template query processed successfully with API</div>'
    except Exception as e:
        response = f"Error generating response: {str(e)}"
        status_message = '<div class="status-info">⚠️ API call failed, using fallback</div>'

    return response, selection_info, status_message


def process_thought_template_query(query, template_style, task_description, top_n):
    """Process query using thought templates with similarity search - no routing"""
    if not query.strip():
        return "Please enter your question", "", ""

    # Process query with thought templates using the new function
    try:
        # Map template style to model_size and template_size
        style_mapping = {
            "8b_full": ("8b", "full"),
            "8b_small": ("8b", "small"),
            "70b_full": ("70b", "full"),
            "70b_small": ("70b", "small")
        }
        
        if template_style not in style_mapping:
            error_msg = f"Invalid template style: {template_style}"
            return error_msg, "", ""
        
        model_size, template_size = style_mapping[template_style]
        
        # Use the enhance_query_with_templates function
        enhanced_query, retrieved_templates = enhance_query_with_templates(
            model_size=model_size,
            template_size=template_size,
            query=query,
            task_description=task_description if task_description.strip() else None,
            top_k=top_n
        )
        
        # Generate response using Llama3.1 8B model (actual API call)
        try:
            llama_response = model_prompting(
                llm_model="meta/llama-3.1-8b-instruct",
                prompt=enhanced_query,
                max_token_num=1024,  # Changed from 4096 to 1024
                temperature=0.0,
                top_p=0.9,
                stream=True
            )
        except Exception as e:
            llama_response = f"[API Error] Unable to generate response: {str(e)}\n\nEnhanced Query: {enhanced_query}"
        
        # Create template information display
        template_info = f"""
## 🧠 Used Thought Templates

**Template Style**: {template_style}
**Number of Templates**: {len(retrieved_templates)}
**Benchmark Task**: {task_description if task_description.strip() else 'All Tasks'}
**API Model**: meta/llama-3.1-8b-instruct
**Status**: {'βœ… API call successful' if 'API Error' not in llama_response else '⚠️ API call failed'}

### Retrieved Templates:
"""
        
        for template in retrieved_templates:
            template_info += f"""
**Template {template['index']}** (Similarity: {template['similarity_score']:.4f}):
- **Query**: {template['query']}
- **Task**: {template['task_description']}
- **Template**: {template['thought_template']}

"""
        
        return enhanced_query, template_info, llama_response
        
    except Exception as e:
        error_msg = f"Error processing thought template query: {str(e)}"
        return error_msg, "", ""


# Test function to verify dropdown functionality
def test_dropdown_functionality():
    """Test function to verify dropdown components are working"""
    print("Testing dropdown functionality...")
    
    # Test template style mapping
    style_mapping = {
        "8b_full": ("8b", "full"),
        "8b_small": ("8b", "small"),
        "70b_full": ("70b", "full"),
        "70b_small": ("70b", "small")
    }
    
    for style, (model_size, template_size) in style_mapping.items():
        print(f"βœ… Template style '{style}' maps to model_size='{model_size}', template_size='{template_size}'")
    
    # Test benchmark task options
    benchmark_tasks = [
        ("All Tasks", ""),
        ("ARC-Challenge", "ARC-Challenge"),
        ("BoolQ", "BoolQ"),
        ("CommonsenseQA", "CommonsenseQA"),
        ("GPQA", "GPQA"),
        ("GSM8K", "GSM8K"),
        ("HellaSwag", "HellaSwag"),
        ("HumanEval", "HumanEval"),
        ("MATH", "MATH"),
        ("MBPP", "MBPP"),
        ("MMLU", "MMLU"),
        ("Natural Questions", "Natural Questions"),
        ("OpenBookQA", "OpenBookQA"),
        ("SQuAD", "SQuAD"),
        ("TriviaQA", "TriviaQA")
    ]
    
    print(f"βœ… {len(benchmark_tasks)} benchmark task options available")
    
    return True

# Run test on import
if __name__ == "__main__":
    test_dropdown_functionality()
else:
    # Run test when module is imported
    try:
        test_dropdown_functionality()
    except Exception as e:
        print(f"Warning: Dropdown functionality test failed: {e}")

# Create Gradio interface
def create_interface():
    with gr.Blocks(
            title="GNN-LLM System with Prompt Templates",
            theme=gr.themes.Soft(),
            css="""
        /* Theme-robust CSS with CSS variables */
        :root {
            --primary-color: #4CAF50;
            --secondary-color: #ff6b6b;
            --success-color: #28a745;
            --info-color: #17a2b8;
            --warning-color: #ffc107;
            --danger-color: #dc3545;
            
            /* Light theme colors */
            --bg-primary: #ffffff;
            --bg-secondary: #f8f9fa;
            --bg-info: #f0f8ff;
            --bg-template: #fff5f5;
            --text-primary: #212529;
            --text-secondary: #6c757d;
            --border-color: #dee2e6;
            --shadow-color: rgba(0, 0, 0, 0.1);
        }
        
        /* Dark theme colors */
        [data-theme="dark"] {
            --bg-primary: #1a1a1a;
            --bg-secondary: #2d2d2d;
            --bg-info: #1a2332;
            --bg-template: #2d1a1a;
            --text-primary: #ffffff;
            --text-secondary: #b0b0b0;
            --border-color: #404040;
            --shadow-color: rgba(255, 255, 255, 0.1);
        }
        
        /* Auto-detect system theme */
        @media (prefers-color-scheme: dark) {
            :root {
                --bg-primary: #1a1a1a;
                --bg-secondary: #2d2d2d;
                --bg-info: #1a2332;
                --bg-template: #2d1a1a;
                --text-primary: #ffffff;
                --text-secondary: #b0b0b0;
                --border-color: #404040;
                --shadow-color: rgba(255, 255, 255, 0.1);
            }
        }
        
        /* Manual theme toggle support */
        .theme-light {
            --bg-primary: #ffffff;
            --bg-secondary: #f8f9fa;
            --bg-info: #f0f8ff;
            --bg-template: #fff5f5;
            --text-primary: #212529;
            --text-secondary: #6c757d;
            --border-color: #dee2e6;
            --shadow-color: rgba(0, 0, 0, 0.1);
        }
        
        .theme-dark {
            --bg-primary: #1a1a1a;
            --bg-secondary: #2d2d2d;
            --bg-info: #1a2332;
            --bg-template: #2d1a1a;
            --text-primary: #ffffff;
            --text-secondary: #b0b0b0;
            --border-color: #404040;
            --shadow-color: rgba(255, 255, 255, 0.1);
        }
        
        /* Theme toggle button styling */
        .theme-toggle {
            position: fixed;
            top: 20px;
            right: 20px;
            z-index: 1000;
            background: var(--bg-secondary);
            border: 2px solid var(--border-color);
            border-radius: 50%;
            width: 50px;
            height: 50px;
            display: flex;
            align-items: center;
            justify-content: center;
            cursor: pointer;
            transition: all 0.3s ease;
            box-shadow: 0 2px 8px var(--shadow-color);
        }
        
        .theme-toggle:hover {
            transform: scale(1.1);
            box-shadow: 0 4px 16px var(--shadow-color);
        }
        
        .theme-toggle:active {
            transform: scale(0.95);
        }
        
        .gradio-container {
            max-width: 1200px !important;
        }
        
        /* Theme-robust selection info box */
        .selection-info {
            background-color: var(--bg-info);
            color: var(--text-primary);
            padding: 15px;
            border-radius: 10px;
            border-left: 4px solid var(--primary-color);
            box-shadow: 0 2px 4px var(--shadow-color);
            transition: all 0.3s ease;
        }
        
        .selection-info:hover {
            box-shadow: 0 4px 8px var(--shadow-color);
            transform: translateY(-1px);
        }
        
        /* Theme-robust template info box */
        .template-info {
            background-color: var(--bg-template);
            color: var(--text-primary);
            padding: 15px;
            border-radius: 10px;
            border-left: 4px solid var(--secondary-color);
            box-shadow: 0 2px 4px var(--shadow-color);
            transition: all 0.3s ease;
        }
        
        .template-info:hover {
            box-shadow: 0 4px 8px var(--shadow-color);
            transform: translateY(-1px);
        }
        
        /* Enhanced button styling */
        .enhanced-button {
            transition: all 0.3s ease;
            border-radius: 8px;
            font-weight: 500;
        }
        
        .enhanced-button:hover {
            transform: translateY(-2px);
            box-shadow: 0 4px 12px var(--shadow-color);
        }
        
        /* Card-like containers */
        .card-container {
            background-color: var(--bg-secondary);
            border: 1px solid var(--border-color);
            border-radius: 12px;
            padding: 20px;
            margin: 10px 0;
            box-shadow: 0 2px 8px var(--shadow-color);
            transition: all 0.3s ease;
        }
        
        .card-container:hover {
            box-shadow: 0 4px 16px var(--shadow-color);
            transform: translateY(-2px);
        }
        
        /* Status indicators */
        .status-success {
            color: var(--success-color);
            font-weight: 500;
        }
        
        .status-info {
            color: var(--info-color);
            font-weight: 500;
        }
        
        /* Responsive design improvements */
        @media (max-width: 768px) {
            .gradio-container {
                max-width: 100% !important;
                padding: 10px;
            }
            
            .card-container {
                padding: 15px;
                margin: 5px 0;
            }
        }
        
        /* Accessibility improvements */
        .sr-only {
            position: absolute;
            width: 1px;
            height: 1px;
            padding: 0;
            margin: -1px;
            overflow: hidden;
            clip: rect(0, 0, 0, 0);
            white-space: nowrap;
            border: 0;
        }
        
        /* Focus indicators for better accessibility */
        button:focus,
        input:focus,
        textarea:focus,
        select:focus {
            outline: 2px solid var(--primary-color);
            outline-offset: 2px;
        }
        
        /* Theme-robust Markdown content */
        .markdown-content {
            color: var(--text-primary);
        }
        
        .markdown-content h1,
        .markdown-content h2,
        .markdown-content h3,
        .markdown-content h4,
        .markdown-content h5,
        .markdown-content h6 {
            color: var(--text-primary);
            border-bottom: 1px solid var(--border-color);
            padding-bottom: 8px;
            margin-top: 20px;
            margin-bottom: 15px;
        }
        
        .markdown-content p {
            color: var(--text-secondary);
            line-height: 1.6;
            margin-bottom: 12px;
        }
        
        .markdown-content ul,
        .markdown-content ol {
            color: var(--text-secondary);
            padding-left: 20px;
        }
        
        .markdown-content li {
            margin-bottom: 8px;
            color: var(--text-secondary);
        }
        
        .markdown-content strong,
        .markdown-content b {
            color: var(--text-primary);
            font-weight: 600;
        }
        
        .markdown-content code {
            background-color: var(--bg-secondary);
            color: var(--text-primary);
            padding: 2px 6px;
            border-radius: 4px;
            border: 1px solid var(--border-color);
            font-family: 'Courier New', monospace;
        }
        
        .markdown-content pre {
            background-color: var(--bg-secondary);
            border: 1px solid var(--border-color);
            border-radius: 8px;
            padding: 15px;
            overflow-x: auto;
            margin: 15px 0;
        }
        
        .markdown-content pre code {
            background: none;
            border: none;
            padding: 0;
        }
        
        /* Enhanced template info styling */
        .template-info {
            background-color: var(--bg-template);
            color: var(--text-primary);
            padding: 20px;
            border-radius: 12px;
            border-left: 4px solid var(--secondary-color);
            box-shadow: 0 2px 8px var(--shadow-color);
            transition: all 0.3s ease;
            margin: 15px 0;
        }
        
        .template-info:hover {
            box-shadow: 0 4px 16px var(--shadow-color);
            transform: translateY(-2px);
        }
        
        .template-info h3 {
            color: var(--text-primary);
            margin-top: 0;
            margin-bottom: 15px;
            font-size: 1.3em;
        }
        
        .template-info p {
            color: var(--text-secondary);
            margin-bottom: 0;
            line-height: 1.5;
        }
        
        /* Accordion styling for theme support */
        .accordion-content {
            background-color: var(--bg-secondary);
            border: 1px solid var(--border-color);
            border-radius: 8px;
            padding: 20px;
            margin: 10px 0;
        }
        
        /* Tab styling improvements */
        .tab-nav {
            border-bottom: 2px solid var(--border-color);
            margin-bottom: 20px;
        }
        
        .tab-nav button {
            background-color: var(--bg-secondary);
            color: var(--text-secondary);
            border: none;
            padding: 12px 20px;
            margin-right: 5px;
            border-radius: 8px 8px 0 0;
            transition: all 0.3s ease;
        }
        
        .tab-nav button.active {
            background-color: var(--primary-color);
            color: white;
        }
        
        .tab-nav button:hover {
            background-color: var(--bg-info);
            color: var(--text-primary);
        }
        
        /* Equal height columns and consistent UI design */
        .equal-height-columns {
            display: flex;
            align-items: stretch;
        }
        
        .equal-height-columns > .column {
            display: flex;
            flex-direction: column;
        }
        
        .equal-height-columns .card-container {
            height: 100%;
            display: flex;
            flex-direction: column;
        }
        
        .equal-height-columns .card-container > * {
            flex: 1;
        }
        
        .equal-height-columns .card-container textarea,
        .equal-height-columns .card-container .textbox {
            flex: 1;
            min-height: 200px;
        }
        
        .equal-height-columns .card-container .textbox textarea {
            height: 100% !important;
            min-height: 200px !important;
            resize: vertical;
            overflow-y: auto !important;
            word-wrap: break-word !important;
            white-space: pre-wrap !important;
        }
        
        /* Force textbox to show content properly */
        .equal-height-columns .card-container .textbox {
            min-height: 250px;
            display: flex;
            flex-direction: column;
        }
        
        .equal-height-columns .card-container .textbox > div {
            flex: 1;
            display: flex;
            flex-direction: column;
        }
        
        .equal-height-columns .card-container .textbox > div > textarea {
            flex: 1;
            height: auto !important;
            min-height: 200px !important;
        }
        
        /* Ensure Enhanced Query textbox fills available height */
        .equal-height-columns .card-container .textbox[data-testid*="enhanced"] {
            height: 100%;
        }
        
        .equal-height-columns .card-container .textbox[data-testid*="enhanced"] textarea {
            height: 100% !important;
            min-height: 300px !important;
            resize: vertical;
        }
        
        /* Consistent section styling */
        .content-section {
            background-color: var(--bg-secondary);
            border: 1px solid var(--border-color);
            border-radius: 12px;
            padding: 20px;
            margin: 10px 0;
            box-shadow: 0 2px 8px var(--shadow-color);
            transition: all 0.3s ease;
        }
        
        .content-section:hover {
            box-shadow: 0 4px 16px var(--shadow-color);
            transform: translateY(-2px);
        }
        
        .content-section h3 {
            color: var(--text-primary);
            margin-top: 0;
            margin-bottom: 15px;
            font-size: 1.2em;
            border-bottom: 1px solid var(--border-color);
            padding-bottom: 8px;
        }
        """
    ) as demo:
        gr.Markdown("""
        # πŸš€ LLM RoutePilot

        This system uses an advanced Graph Neural Network (GNN) router to analyze your query and automatically selects the most suitable Large Language Model (LLM) from a pool of 10+ models to answer your questions.

        ## πŸ“‹ System Features:
        - 🧠 **Advanced Graph Router**: Sophisticated GNN-based routing system with 10+ LLM options
        - 🎯 **Intelligent Selection**: Analyzes query content, task type, and domain to choose optimal LLM
        - πŸ“Š **Cost-Performance Optimization**: Routes based on cost and performance trade-offs
        - 🎨 **Prompt Templates**: Use structured templates for specialized responses
        - ⚑ **Real-time Processing**: Fast response to user queries
        - πŸŒ™ **Theme Support**: Automatically adapts to light and dark themes
        - πŸ”„ **Fallback System**: Graceful degradation if advanced routing fails
        """, elem_classes=["markdown-content"])

        # Theme toggle button
        gr.HTML("""
        <div class="theme-toggle" onclick="toggleTheme()" title="Toggle theme">
            <span id="theme-icon">πŸŒ™</span>
        </div>
        
        <script>
        // Theme management
        let currentTheme = localStorage.getItem('theme') || 'auto';
        
        function setTheme(theme) {
            const root = document.documentElement;
            const icon = document.getElementById('theme-icon');
            
            // Remove existing theme classes
            root.classList.remove('theme-light', 'theme-dark');
            
            if (theme === 'light') {
                root.classList.add('theme-light');
                icon.textContent = 'πŸŒ™';
            } else if (theme === 'dark') {
                root.classList.add('theme-dark');
                icon.textContent = 'β˜€οΈ';
            } else {
                // Auto theme - use system preference
                if (window.matchMedia && window.matchMedia('(prefers-color-scheme: dark)').matches) {
                    root.classList.add('theme-dark');
                    icon.textContent = 'β˜€οΈ';
                } else {
                    root.classList.add('theme-light');
                    icon.textContent = 'πŸŒ™';
                }
            }
            
            localStorage.setItem('theme', theme);
            currentTheme = theme;
        }
        
        function toggleTheme() {
            if (currentTheme === 'auto') {
                // If auto, switch to light
                setTheme('light');
            } else if (currentTheme === 'light') {
                // If light, switch to dark
                setTheme('dark');
            } else {
                // If dark, switch to auto
                setTheme('auto');
            }
        }
        
        // Initialize theme on page load
        document.addEventListener('DOMContentLoaded', function() {
            setTheme(currentTheme);
        });
        
        // Listen for system theme changes
        window.matchMedia('(prefers-color-scheme: dark)').addEventListener('change', function(e) {
            if (currentTheme === 'auto') {
                setTheme('auto');
            }
        });
        </script>
        """)

        with gr.Tabs():
            # Original Tab - GNN-LLM System
            with gr.TabItem("πŸ€– Advanced Graph Router"):
                with gr.Row():
                    with gr.Column(scale=2):
                        with gr.Group(elem_classes=["card-container"]):
                            query_input = gr.Textbox(
                                label="πŸ’¬ Enter Your Question",
                                placeholder="Please enter the question you want to ask...",
                                lines=3,
                                max_lines=5
                            )

                            submit_btn = gr.Button(
                                "πŸ” Submit Query",
                                variant="primary",
                                scale=1,
                                elem_classes=["enhanced-button"]
                            )

                    with gr.Column(scale=3):
                        with gr.Group(elem_classes=["card-container"]):
                            selection_output = gr.Textbox(
                                label="🎯 Graph Router Analysis",
                                lines=3,
                                max_lines=5,
                                interactive=False
                            )

                with gr.Row():
                    with gr.Group(elem_classes=["card-container"]):
                        response_output = gr.Textbox(
                            label="πŸ’­ AI Response",
                            lines=8,
                            max_lines=15,
                            interactive=False
                        )

                # Event handling
                submit_btn.click(
                    fn=process_query,
                    inputs=[query_input],
                    outputs=[response_output, selection_output],
                    show_progress=True
                )

                query_input.submit(
                    fn=process_query,
                    inputs=[query_input],
                    outputs=[response_output, selection_output],
                    show_progress=True
                )

            # New Tab - Thought Template Assistant
            with gr.TabItem("🧠 Thought Template Assistant"):
                gr.Markdown("""
                ### 🧠 Thought Template System with Similarity Search
                This system uses embedding-based similarity search to find the most relevant thought templates for your query. 
                It then generates a structured thought prompt and provides a response using Llama3.1 8B model.
                """, elem_classes=["template-info"])

                with gr.Row(elem_classes=["equal-height-columns"]):
                    with gr.Column(scale=1, elem_classes=["column"]):
                        with gr.Group(elem_classes=["card-container"]):
                            thought_query_input = gr.Textbox(
                                label="πŸ’¬ Enter Your Question",
                                placeholder="Please enter the question you want to analyze with thought templates...",
                                lines=3,
                                max_lines=5
                            )

                            thought_template_style = gr.Dropdown(
                                label="πŸ“š Select Template Style",
                                choices=[
                                    ("8B Full Templates", "8b_full"),
                                    ("8B Small Templates", "8b_small"),
                                    ("70B Full Templates", "70b_full"),
                                    ("70B Small Templates", "70b_small")
                                ],
                                value="8b_full"
                            )

                            thought_task_description = gr.Dropdown(
                                label="πŸ† Benchmark Task (Optional)",
                                choices=[
                                    ("All Tasks", ""),
                                    ("ARC-Challenge", "ARC-Challenge"),
                                    ("BoolQ", "BoolQ"),
                                    ("CommonsenseQA", "CommonsenseQA"),
                                    ("GPQA", "GPQA"),
                                    ("GSM8K", "GSM8K"),
                                    ("HellaSwag", "HellaSwag"),
                                    ("HumanEval", "HumanEval"),
                                    ("MATH", "MATH"),
                                    ("MBPP", "MBPP"),
                                    ("MMLU", "MMLU"),
                                    ("Natural Questions", "Natural Questions"),
                                    ("OpenBookQA", "OpenBookQA"),
                                    ("SQuAD", "SQuAD"),
                                    ("TriviaQA", "TriviaQA")
                                ],
                                value="",
                                info="Select a specific benchmark task to filter templates, or leave as 'All Tasks' to search across all tasks"
                            )

                            thought_top_n = gr.Slider(
                                label="πŸ” Number of Similar Templates",
                                minimum=1,
                                maximum=10,
                                value=3,
                                step=1,
                                info="Number of most similar templates to retrieve"
                            )

                            thought_submit_btn = gr.Button(
                                "🧠 Generate Thought Template",
                                variant="primary",
                                elem_classes=["enhanced-button"]
                            )

                with gr.Row():
                    with gr.Group(elem_classes=["content-section"]):
                        enhanced_query_output = gr.Textbox(
                            label="πŸ“ Enhanced Query",
                            lines=15,
                            max_lines=25,
                            interactive=False
                        )

                with gr.Row():
                    with gr.Group(elem_classes=["content-section"]):
                        thought_templates_output = gr.Textbox(
                            label="🧠 Used Thought Templates",
                            lines=15,
                            max_lines=25,
                            interactive=False
                        )

                with gr.Row():
                    with gr.Group(elem_classes=["content-section"]):
                        llama_response_output = gr.Textbox(
                            label="πŸ€– Llama3.1 8B Response",
                            lines=15,
                            max_lines=25,
                            interactive=False
                        )

                # Event handling for thought template
                thought_submit_btn.click(
                    fn=process_thought_template_query,
                    inputs=[thought_query_input, thought_template_style, thought_task_description, thought_top_n],
                    outputs=[enhanced_query_output, thought_templates_output, llama_response_output],
                    show_progress=True
                )

                thought_query_input.submit(
                    fn=process_thought_template_query,
                    inputs=[thought_query_input, thought_template_style, thought_task_description, thought_top_n],
                    outputs=[enhanced_query_output, thought_templates_output, llama_response_output],
                    show_progress=True
                )

        # Add system information
        with gr.Accordion("System Information", open=False):
            gr.Markdown("""
            ### Technical Architecture:
            - **Advanced Graph Router**: Sophisticated Graph Neural Network built with PyTorch Geometric
            - **Multi-Model Pool**: Access to 10+ different LLM models with varying capabilities
            - **Intelligent Routing**: Analyzes query embeddings, task descriptions, and performance metrics
            - **Cost-Performance Optimization**: Routes based on cost and performance trade-offs
            - **Feature Extraction**: Converts query text to graph structure for advanced analysis
            - **LLM Integration**: Supports API calls to various large language models via NVIDIA API
            - **Prompt Templates**: Structured templates for specialized responses
            - **Thought Templates**: Embedding-based similarity search for reasoning guidance
            - **Interface Framework**: Interactive web interface built with Gradio
            - **Theme Support**: Automatically adapts to light and dark themes

            ### Available LLM Models (10+ Models):
            - **Small Models (7B-12B)**: Fast, cost-effective for simple tasks
              - Llama-3.1-8B-Instruct, Qwen2.5-7B-Instruct, Granite-3.0-8B-Instruct
              - Gemma-7B, CodeGemma-7B, Mistral-7B-Instruct-v0.3
            - **Medium Models (12B-51B)**: Balanced performance and cost
              - Mistral-Nemo-12B-Instruct, Llama3-ChatQA-1.5-8B
              - Granite-34B-Code-Instruct, Mixtral-8x7B-Instruct-v0.1
            - **Large Models (51B-122B)**: High performance for complex tasks
              - Llama-3.3-Nemotron-Super-49B-v1, Llama-3.1-Nemotron-51B-Instruct
              - Llama3-ChatQA-1.5-70B, Llama-3.1-70B-Instruct
              - DeepSeek-R1 (671B), Mixtral-8x22B-Instruct-v0.1, Palmyra-Creative-122B

            ### Routing Scenarios:
            - **Performance First**: Prioritizes model performance over cost
            - **Balance**: Balances performance and cost considerations
            - **Cost First**: Prioritizes cost-effectiveness over performance

            ### Available Templates:
            - **πŸ’» Code Assistant**: Programming and development tasks
            - **πŸ“š Academic Tutor**: Educational content and learning assistance
            - **πŸ’Ό Business Consultant**: Strategic business analysis
            - **✍️ Creative Writer**: Creative writing and content creation
            - **πŸ”¬ Research Analyst**: Research and analysis tasks
            - **🎨 Custom Template**: Define your own prompt structure

            ### Thought Template Styles:
            - **8B Full Templates**: Comprehensive templates for 8B model reasoning
            - **8B Small Templates**: Condensed templates for 8B model reasoning
            - **70B Full Templates**: Comprehensive templates for 70B model reasoning
            - **70B Small Templates**: Condensed templates for 70B model reasoning

            ### Available Benchmark Tasks:
            - **ARC-Challenge**: AI2 Reasoning Challenge
            - **BoolQ**: Boolean Questions
            - **CommonsenseQA**: Commonsense Question Answering
            - **GPQA**: Graduate-Level Physics Questions
            - **GSM8K**: Grade School Math 8K
            - **HellaSwag**: HellaSwag Dataset
            - **HumanEval**: Human Evaluation
            - **MATH**: Mathematics Dataset
            - **MBPP**: Mostly Basic Python Problems
            - **MMLU**: Massive Multitask Language Understanding
            - **Natural Questions**: Natural Questions Dataset
            - **OpenBookQA**: Open Book Question Answering
            - **SQuAD**: Stanford Question Answering Dataset
            - **TriviaQA**: Trivia Question Answering

            ### Usage Instructions:
            1. **Advanced Graph Router**: Use the first tab for queries with sophisticated GNN-based routing across 10+ LLMs
            2. **Thought Template Assistant**: Use the second tab for embedding-based similarity search with Llama3.1 8B model (no routing)
            3. System automatically analyzes your query and selects the optimal LLM based on content, task type, and cost-performance trade-offs
            4. View detailed routing information including selected model, task description, and routing method
            5. Get enhanced responses with thought templates (tab 2)
            6. **Theme Support**: The interface automatically adapts to your system's theme preference
            7. **Fallback System**: If advanced routing fails, the system gracefully falls back to a default model
            """, elem_classes=["markdown-content"])

    return demo


# Launch application
if __name__ == "__main__":
    demo = create_interface()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        show_error=True,
        debug=True
    )