from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr import torch title = 'ChatBot' description = 'This is a test model i created to learn how to create one haha' examples = [['What is life?']] tokenizer = AutoTokenizer.from_pretrained('microsoft/DialoGPT-large') model = AutoModelForCausalLM.from_pretrained('microsoft/DialoGPT-large') def predict(input, history=[]): new_user_input_ids = tokenizer.encode( input + tokenizer.eos_token, return_tensors='pt' ) bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) history = model.generate( bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id ).tolist() response = tokenizer.decode(history[0]).split('<|endoftext|>') response = [ (response[i], response[i+1]) for i in range(0, len(response) - 1, 2) ] return response, history gr.Interface( fn=predict, title=title, description=description, examples=examples, inputs=['text', 'state'], outputs=['chatbot', 'state'], ).launch()