File size: 5,907 Bytes
5de10eb
 
 
 
 
 
20ad880
5de10eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
739cefc
 
 
5de10eb
 
 
20ad880
5de10eb
 
 
 
20ad880
 
 
5de10eb
 
 
 
 
 
 
bc17b4e
5de10eb
 
 
20ad880
 
 
 
 
 
 
5de10eb
 
 
 
98e4b89
 
 
 
 
5de10eb
 
 
20ad880
 
 
5de10eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98e4b89
5de10eb
98e4b89
 
5de10eb
20ad880
5de10eb
20ad880
 
 
5de10eb
20ad880
5de10eb
 
 
 
 
 
 
 
20ad880
 
 
 
 
5de10eb
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gradio as gr
import os
import MNN
import numpy as np
import cv2
from PIL import Image
import time


# 复制原始modelTest函数中的必要函数
def process_image(data, H, W, C, color='BGR'):
    """
    处理图像数据(灰度或彩色)并转换为指定色彩空间
    
    参数:
        data: 输入数据指针 (numpy数组形式传入)
        H: 高度
        W: 宽度
        C: 通道数 (1 或 3)
        color: 目标色彩空间 ('BGR', 'RGB', 'YCbCr', 'YUV')
    
    返回:
        numpy数组 处理后的图像
    """
    if C == 1:
        # 灰度图像处理
        gray = np.array(data, dtype=np.float32).reshape(H, W)
        gray = (gray * 255).astype(np.uint8)
        result = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR)
        return result
    else:
        # 彩色图像处理
        # 将数据拆分为各个通道
        channels = [
            np.array(data[i*H*W : (i+1)*H*W], dtype=np.float32).reshape(H, W)
            for i in range(C)
        ]
        if color == 'RGB':
            # RGB -> BGR (OpenCV默认顺序)
            channels[0], channels[2] = channels[2], channels[0]  # 交换R和B通道
            result = cv2.merge(channels)
            result = (result * 255).astype(np.uint8)
        else:
            # 先合并为BGR格式
            rgb = cv2.merge(channels)
            rgb = (rgb * 255).astype(np.uint8)
            # 转换为目标色彩空间
            if color == 'YCbCr':
                result = cv2.cvtColor(rgb, cv2.COLOR_BGR2YCrCb)
            elif color == 'YUV':
                result = cv2.cvtColor(rgb, cv2.COLOR_BGR2YUV)
            else:
                result = rgb  # 默认为BGR
            
        return result

def createTensor(tensor):
    shape = tensor.getShape()
    data = np.ones(shape, dtype=np.float32)
    return MNN.Tensor(shape, tensor.getDataType(), data, tensor.getDimensionType())

def modelTest_for_gradio(modelPath, image_path, tilesize = 0, backend = 3):
    if tilesize<=0:
        tilesize = 128
    model_name = os.path.basename(modelPath)
    if "-Grayscale" in model_name:
        model_channel = 1
    elif "-4ch" in model_name or "RGBA" in model_name:
        model_channel = 4
    else:
        model_channel = 3

    # 记录模型加载开始时间
    load_start_time = time.time()
    # 加载模型(计时范围内)
    net = MNN.Interpreter(modelPath)
    # set 9 for Session_Backend_Auto, Let BackGround Tuning
    net.setSessionMode(9)
    # set 0 for tune_num
    # net.setSessionHint(0, 20)
    config = {}
    # "CPU"或0(默认), "OPENCL"或3,"OPENGL"或6, "VULKAN"或7, "METAL"或1, "TRT"或9, "CUDA"或2, "HIAI"或8
    config['backend'] = backend
    #config['precision'] = "low"
    session = net.createSession(config)
    print("Run on backendtype: %d \n" % net.getSessionInfo(session, 2))
    inputTensor = net.getSessionInput(session)
    net.resizeTensor(inputTensor, (1, model_channel, tilesize, tilesize))
    net.resizeSession(session)
    # 计算模型加载耗时
    load_time = time.time() - load_start_time
    print(f"Load mnn model: {load_time:.4f} sec")
    
    # 读取图像
    image = cv2.imread(image_path)
    if image.ndim == 2:
        # 为了方便处理,先将其扩展为3维数组 (height, width, 1)
        # print("extend dims, image.shape=", image.shape)
        image_channel = 1
        # image = np.expand_dims(image, axis=-1)
    else:
        image_channel = image.shape[2]
    
    image = cv2.resize(image, (tilesize, tilesize))

    # 记录推理开始时间
    infer_start_time = time.time()

    # 处理通道数不匹配的情况
    if image_channel == 3:
        if model_channel == 1:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        elif model_channel == 3:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        elif model_channel == 4:    
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGBA)
        else:
            print(f"unexpect input: model_channel {model_channel}, image_channel {image_channel}")
    elif image_channel == 4:
        if model_channel == 1:
            image = cv2.cvtColor(image, cv2.COLOR_BGRA2GRAY)
        elif model_channel == 3:
            image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGB)
        elif model_channel == 4:
            image = cv2.cvtColor(image, cv2.COLOR_BGRA2RGBA)
        else:
            print(f"unexpect input: model_channel {model_channel}, image_channel {image_channel}")
    else:
        print(f"unexpect input: model_channel {model_channel}, image_channel {image_channel}")

    # 显示图像(在Gradio中不需要)
    # display(Image(data=cv2.imencode('.jpg', image)[1].tobytes()))
    # print("image.shape=", image.shape)
    image = image/255.0
    if model_channel>=3:
        image = image.transpose((2, 0, 1))
    image = image.astype(np.float32)

    tmp_input = MNN.Tensor((1, model_channel, tilesize, tilesize), MNN.Halide_Type_Float, image, MNN.Tensor_DimensionType_Caffe)
    inputTensor.copyFrom(tmp_input)   

    # 执行推理
    net.runSession(session)
    
    outputTensor = net.getSessionOutput(session)
    outputShape = outputTensor.getShape()
    print("outputShape",outputShape)
    outputHost = createTensor(outputTensor)
    outputTensor.copyToHostTensor(outputHost)
    
    outimage = process_image(outputHost.getData(), outputShape[2], outputShape[3], outputShape[1], color='RGB')
    
    # 计算推理耗时
    infer_time = time.time() - infer_start_time
    print(f"Infer latency time: {infer_time:.4f} sec")
    # 返回图像、加载时间、推理时间
    return outimage, load_time, infer_time

# def gradio_interface(modelPath, input_image):
#     processed_image_np = modelTest_for_gradio(modelPath, input_image)
    
#     processed_image_pil = Image.fromarray(cv2.cvtColor(processed_image_np, cv2.COLOR_BGR2RGB))
    
#     return processed_image_pil