Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,14 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
-
from transformers import
|
3 |
import torch
|
4 |
import json
|
|
|
|
|
|
|
5 |
|
6 |
-
app = FastAPI()
|
7 |
|
8 |
-
#
|
9 |
models = {}
|
10 |
tokenizers = {}
|
11 |
|
@@ -14,85 +17,319 @@ MODEL_CONFIGS = {
|
|
14 |
"qwen3-4b": "Qwen/Qwen3-4B"
|
15 |
}
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
@app.on_event("startup")
|
18 |
async def load_models():
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
)
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
@app.post("/v1/chat/completions")
|
31 |
-
def chat_completions(request:
|
|
|
|
|
|
|
|
|
32 |
try:
|
|
|
33 |
model_name = request.get("model", "qwen3-1.7b")
|
34 |
messages = request.get("messages", [])
|
35 |
temperature = request.get("temperature", 0.7)
|
36 |
max_tokens = request.get("max_tokens", 1024)
|
37 |
|
38 |
-
#
|
39 |
-
if
|
|
|
|
|
|
|
|
|
40 |
model_key = "qwen3-4b"
|
41 |
else:
|
42 |
model_key = "qwen3-1.7b"
|
43 |
|
|
|
|
|
|
|
44 |
if model_key not in models:
|
45 |
-
|
46 |
|
|
|
47 |
tokenizer = tokenizers[model_key]
|
48 |
model = models[model_key]
|
49 |
|
50 |
-
# Format messages cho Qwen3
|
|
|
51 |
text = tokenizer.apply_chat_template(
|
52 |
messages,
|
53 |
tokenize=False,
|
54 |
add_generation_prompt=True,
|
55 |
-
enable_thinking=False # Tắt thinking mode để response nhanh
|
56 |
)
|
57 |
|
58 |
-
|
|
|
59 |
|
60 |
-
#
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
# Extract response - chỉ lấy phần mới generate
|
70 |
-
|
|
|
71 |
response = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
72 |
|
73 |
-
#
|
|
|
|
|
|
|
|
|
74 |
return {
|
75 |
"choices": [{
|
76 |
"message": {
|
77 |
"content": response,
|
78 |
"role": "assistant"
|
79 |
-
}
|
|
|
|
|
80 |
}],
|
81 |
-
"model": model_key
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
}
|
83 |
|
|
|
|
|
84 |
except Exception as e:
|
85 |
-
print(f"Error: {str(e)}")
|
|
|
86 |
return {
|
87 |
"choices": [{
|
88 |
"message": {
|
89 |
-
"content": f"
|
90 |
"role": "assistant"
|
91 |
-
}
|
|
|
|
|
92 |
}],
|
93 |
-
"error":
|
|
|
|
|
|
|
|
|
|
|
94 |
}
|
95 |
|
96 |
-
@app.
|
97 |
-
def
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
import json
|
5 |
+
import time
|
6 |
+
from typing import Dict, Any, Optional
|
7 |
+
import os
|
8 |
|
9 |
+
app = FastAPI(title="Qwen3 API", description="API for Qwen3 models", version="1.0.0")
|
10 |
|
11 |
+
# Global variables để lưu models
|
12 |
models = {}
|
13 |
tokenizers = {}
|
14 |
|
|
|
17 |
"qwen3-4b": "Qwen/Qwen3-4B"
|
18 |
}
|
19 |
|
20 |
+
def download_model_safely(model_name: str, max_retries: int = 3):
|
21 |
+
"""Download model với retry logic và error handling"""
|
22 |
+
for attempt in range(max_retries):
|
23 |
+
try:
|
24 |
+
print(f"Downloading {model_name} (attempt {attempt + 1}/{max_retries})...")
|
25 |
+
|
26 |
+
# Download tokenizer với các parameters tối ưu
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
28 |
+
model_name,
|
29 |
+
resume_download=True,
|
30 |
+
timeout=600,
|
31 |
+
trust_remote_code=True,
|
32 |
+
cache_dir=None # Sử dụng cache mặc định
|
33 |
+
)
|
34 |
+
|
35 |
+
# Download model với cấu hình tối ưu cho free tier
|
36 |
+
model = AutoModelForCausalLM.from_pretrained(
|
37 |
+
model_name,
|
38 |
+
torch_dtype="auto",
|
39 |
+
device_map="auto",
|
40 |
+
resume_download=True,
|
41 |
+
timeout=600,
|
42 |
+
trust_remote_code=True,
|
43 |
+
cache_dir=None,
|
44 |
+
low_cpu_mem_usage=True # Tối ưu memory usage
|
45 |
+
)
|
46 |
+
|
47 |
+
print(f"Successfully loaded {model_name}")
|
48 |
+
return tokenizer, model
|
49 |
+
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Download failed (attempt {attempt + 1}): {str(e)}")
|
52 |
+
if attempt == max_retries - 1:
|
53 |
+
raise e
|
54 |
+
time.sleep(30) # Wait before retry
|
55 |
+
|
56 |
+
def load_model_on_demand(model_key: str):
|
57 |
+
"""Load model khi cần thiết với memory management"""
|
58 |
+
if model_key not in models:
|
59 |
+
if model_key not in MODEL_CONFIGS:
|
60 |
+
raise ValueError(f"Unknown model key: {model_key}")
|
61 |
+
|
62 |
+
model_name = MODEL_CONFIGS[model_key]
|
63 |
+
print(f"Loading {model_name} on demand...")
|
64 |
+
|
65 |
+
# Memory management: chỉ giữ 1 model trong memory do giới hạn free tier
|
66 |
+
if len(models) >= 1:
|
67 |
+
oldest_model = list(models.keys())[0]
|
68 |
+
print(f"Unloading {oldest_model} to free memory...")
|
69 |
+
del models[oldest_model]
|
70 |
+
del tokenizers[oldest_model]
|
71 |
+
if torch.cuda.is_available():
|
72 |
+
torch.cuda.empty_cache()
|
73 |
+
|
74 |
+
tokenizer, model = download_model_safely(model_name)
|
75 |
+
tokenizers[model_key] = tokenizer
|
76 |
+
models[model_key] = model
|
77 |
+
print(f"{model_name} loaded successfully!")
|
78 |
+
|
79 |
@app.on_event("startup")
|
80 |
async def load_models():
|
81 |
+
"""Load model mặc định khi startup"""
|
82 |
+
try:
|
83 |
+
print("Loading default model: Qwen3-1.7B...")
|
84 |
+
tokenizer, model = download_model_safely("Qwen/Qwen3-1.7B")
|
85 |
+
tokenizers["qwen3-1.7b"] = tokenizer
|
86 |
+
models["qwen3-1.7b"] = model
|
87 |
+
print("Default model loaded successfully!")
|
88 |
+
except Exception as e:
|
89 |
+
print(f"Failed to load default model: {str(e)}")
|
90 |
+
print("Server will continue running, models will be loaded on demand")
|
91 |
+
|
92 |
+
@app.get("/")
|
93 |
+
def health_check():
|
94 |
+
"""Health check endpoint"""
|
95 |
+
return {
|
96 |
+
"status": "API is running",
|
97 |
+
"available_models": list(MODEL_CONFIGS.keys()),
|
98 |
+
"loaded_models": list(models.keys()),
|
99 |
+
"version": "1.0.0",
|
100 |
+
"message": "Qwen3 API Service"
|
101 |
+
}
|
102 |
+
|
103 |
+
@app.get("/models")
|
104 |
+
def list_models():
|
105 |
+
"""List available models"""
|
106 |
+
return {
|
107 |
+
"available_models": MODEL_CONFIGS,
|
108 |
+
"loaded_models": list(models.keys()),
|
109 |
+
"total_available": len(MODEL_CONFIGS),
|
110 |
+
"total_loaded": len(models)
|
111 |
+
}
|
112 |
|
113 |
@app.post("/v1/chat/completions")
|
114 |
+
def chat_completions(request: Dict[str, Any]):
|
115 |
+
"""
|
116 |
+
OpenAI-compatible chat completions endpoint
|
117 |
+
Tương thích hoàn toàn với code AiService hiện tại
|
118 |
+
"""
|
119 |
try:
|
120 |
+
# Parse request parameters
|
121 |
model_name = request.get("model", "qwen3-1.7b")
|
122 |
messages = request.get("messages", [])
|
123 |
temperature = request.get("temperature", 0.7)
|
124 |
max_tokens = request.get("max_tokens", 1024)
|
125 |
|
126 |
+
# Validate input
|
127 |
+
if not messages:
|
128 |
+
raise HTTPException(status_code=400, detail="Messages cannot be empty")
|
129 |
+
|
130 |
+
# Determine model key từ model name - tương thích với agents.py
|
131 |
+
if "4b" in model_name.lower() or "4" in model_name.lower():
|
132 |
model_key = "qwen3-4b"
|
133 |
else:
|
134 |
model_key = "qwen3-1.7b"
|
135 |
|
136 |
+
print(f"Using model: {model_key} for request")
|
137 |
+
|
138 |
+
# Load model nếu chưa có
|
139 |
if model_key not in models:
|
140 |
+
load_model_on_demand(model_key)
|
141 |
|
142 |
+
# Get model và tokenizer
|
143 |
tokenizer = tokenizers[model_key]
|
144 |
model = models[model_key]
|
145 |
|
146 |
+
# Format messages cho Qwen3 using apply_chat_template
|
147 |
+
# Đây là phần quan trọng để tương thích với Qwen3
|
148 |
text = tokenizer.apply_chat_template(
|
149 |
messages,
|
150 |
tokenize=False,
|
151 |
add_generation_prompt=True,
|
152 |
+
enable_thinking=False # Tắt thinking mode để response đơn giản và nhanh
|
153 |
)
|
154 |
|
155 |
+
# Tokenize input
|
156 |
+
model_inputs = tokenizer([text], return_tensors="pt")
|
157 |
|
158 |
+
# Move to device if available
|
159 |
+
if torch.cuda.is_available():
|
160 |
+
model_inputs = {k: v.to(model.device) for k, v in model_inputs.items()}
|
161 |
+
|
162 |
+
# Generate response với các parameters tối ưu
|
163 |
+
with torch.no_grad():
|
164 |
+
generated_ids = model.generate(
|
165 |
+
**model_inputs,
|
166 |
+
max_new_tokens=min(max_tokens, 2048), # Limit max tokens để tránh timeout
|
167 |
+
temperature=temperature,
|
168 |
+
do_sample=True if temperature > 0 else False,
|
169 |
+
pad_token_id=tokenizer.eos_token_id,
|
170 |
+
eos_token_id=tokenizer.eos_token_id,
|
171 |
+
repetition_penalty=1.1, # Tránh lặp lại
|
172 |
+
top_p=0.9 if temperature > 0 else None,
|
173 |
+
use_cache=True # Tăng tốc generation
|
174 |
+
)
|
175 |
|
176 |
# Extract response - chỉ lấy phần mới generate
|
177 |
+
input_length = model_inputs.input_ids.shape[1]
|
178 |
+
output_ids = generated_ids[0][input_length:].tolist()
|
179 |
response = tokenizer.decode(output_ids, skip_special_tokens=True).strip()
|
180 |
|
181 |
+
# Clean up response
|
182 |
+
if not response:
|
183 |
+
response = "I apologize, but I couldn't generate a proper response. Please try again."
|
184 |
+
|
185 |
+
# Format response theo OpenAI API để tương thích hoàn toàn với AiService
|
186 |
return {
|
187 |
"choices": [{
|
188 |
"message": {
|
189 |
"content": response,
|
190 |
"role": "assistant"
|
191 |
+
},
|
192 |
+
"finish_reason": "stop",
|
193 |
+
"index": 0
|
194 |
}],
|
195 |
+
"model": model_key,
|
196 |
+
"usage": {
|
197 |
+
"prompt_tokens": input_length,
|
198 |
+
"completion_tokens": len(output_ids),
|
199 |
+
"total_tokens": input_length + len(output_ids)
|
200 |
+
},
|
201 |
+
"object": "chat.completion",
|
202 |
+
"created": int(time.time())
|
203 |
}
|
204 |
|
205 |
+
except HTTPException:
|
206 |
+
raise
|
207 |
except Exception as e:
|
208 |
+
print(f"Error in chat_completions: {str(e)}")
|
209 |
+
# Return error trong format tương thích với OpenAI API
|
210 |
return {
|
211 |
"choices": [{
|
212 |
"message": {
|
213 |
+
"content": f"I encountered an error while processing your request: {str(e)}",
|
214 |
"role": "assistant"
|
215 |
+
},
|
216 |
+
"finish_reason": "error",
|
217 |
+
"index": 0
|
218 |
}],
|
219 |
+
"error": {
|
220 |
+
"message": str(e),
|
221 |
+
"type": "internal_error",
|
222 |
+
"code": "processing_error"
|
223 |
+
},
|
224 |
+
"model": "qwen3-1.7b"
|
225 |
}
|
226 |
|
227 |
+
@app.post("/generate")
|
228 |
+
def simple_generate(request: Dict[str, Any]):
|
229 |
+
"""
|
230 |
+
Simple generate endpoint cho testing đơn giản
|
231 |
+
"""
|
232 |
+
try:
|
233 |
+
text = request.get("text", "")
|
234 |
+
model_name = request.get("model", "qwen3-1.7b")
|
235 |
+
max_tokens = request.get("max_tokens", 100)
|
236 |
+
temperature = request.get("temperature", 0.7)
|
237 |
+
|
238 |
+
if not text:
|
239 |
+
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
240 |
+
|
241 |
+
# Determine model key
|
242 |
+
if "4b" in model_name.lower():
|
243 |
+
model_key = "qwen3-4b"
|
244 |
+
else:
|
245 |
+
model_key = "qwen3-1.7b"
|
246 |
+
|
247 |
+
# Load model nếu cần
|
248 |
+
if model_key not in models:
|
249 |
+
load_model_on_demand(model_key)
|
250 |
+
|
251 |
+
tokenizer = tokenizers[model_key]
|
252 |
+
model = models[model_key]
|
253 |
+
|
254 |
+
# Simple generation
|
255 |
+
inputs = tokenizer(text, return_tensors="pt")
|
256 |
+
if torch.cuda.is_available():
|
257 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
258 |
+
|
259 |
+
with torch.no_grad():
|
260 |
+
outputs = model.generate(
|
261 |
+
**inputs,
|
262 |
+
max_new_tokens=max_tokens,
|
263 |
+
temperature=temperature,
|
264 |
+
do_sample=True if temperature > 0 else False,
|
265 |
+
pad_token_id=tokenizer.eos_token_id
|
266 |
+
)
|
267 |
+
|
268 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
269 |
+
|
270 |
+
return {
|
271 |
+
"generated_text": response,
|
272 |
+
"model": model_key,
|
273 |
+
"input_text": text
|
274 |
+
}
|
275 |
+
|
276 |
+
except Exception as e:
|
277 |
+
raise HTTPException(status_code=500, detail=str(e))
|
278 |
+
|
279 |
+
@app.get("/health")
|
280 |
+
def health():
|
281 |
+
"""Simple health check"""
|
282 |
+
return {
|
283 |
+
"status": "healthy",
|
284 |
+
"timestamp": int(time.time()),
|
285 |
+
"models_loaded": len(models)
|
286 |
+
}
|
287 |
+
|
288 |
+
@app.get("/status")
|
289 |
+
def status():
|
290 |
+
"""Detailed status information"""
|
291 |
+
return {
|
292 |
+
"service": "Qwen3 API",
|
293 |
+
"status": "running",
|
294 |
+
"models": {
|
295 |
+
"available": MODEL_CONFIGS,
|
296 |
+
"loaded": list(models.keys()),
|
297 |
+
"memory_usage": {
|
298 |
+
"total_models": len(models),
|
299 |
+
"cuda_available": torch.cuda.is_available(),
|
300 |
+
"cuda_memory": torch.cuda.get_device_properties(0).total_memory if torch.cuda.is_available() else None
|
301 |
+
}
|
302 |
+
},
|
303 |
+
"endpoints": [
|
304 |
+
"/v1/chat/completions",
|
305 |
+
"/generate",
|
306 |
+
"/models",
|
307 |
+
"/health",
|
308 |
+
"/status"
|
309 |
+
]
|
310 |
+
}
|
311 |
+
|
312 |
+
# Error handlers
|
313 |
+
@app.exception_handler(404)
|
314 |
+
async def not_found_handler(request, exc):
|
315 |
+
return {
|
316 |
+
"error": {
|
317 |
+
"message": "Endpoint not found",
|
318 |
+
"type": "not_found_error",
|
319 |
+
"code": 404
|
320 |
+
}
|
321 |
+
}
|
322 |
+
|
323 |
+
@app.exception_handler(500)
|
324 |
+
async def internal_error_handler(request, exc):
|
325 |
+
return {
|
326 |
+
"error": {
|
327 |
+
"message": "Internal server error",
|
328 |
+
"type": "internal_server_error",
|
329 |
+
"code": 500
|
330 |
+
}
|
331 |
+
}
|
332 |
+
|
333 |
+
if __name__ == "__main__":
|
334 |
+
import uvicorn
|
335 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|