Commit
·
204483a
1
Parent(s):
aa994e3
first test of files
Browse files- app.py +34 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoImageProcessor, ConvNextForImageClassification
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Load model and processor from your model repo on the Hub
|
7 |
+
model = ConvNextForImageClassification.from_pretrained("todorristov/car_classification_model")
|
8 |
+
processor = AutoImageProcessor.from_pretrained("todorristov/car_classification_model")
|
9 |
+
|
10 |
+
# Define inference function
|
11 |
+
def classify_car(image):
|
12 |
+
inputs = processor(images=image, return_tensors="pt")
|
13 |
+
with torch.no_grad():
|
14 |
+
outputs = model(**inputs)
|
15 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
|
16 |
+
predicted_class_idx = probs.argmax().item()
|
17 |
+
label = model.config.id2label[str(predicted_class_idx)]
|
18 |
+
confidence = probs[0][predicted_class_idx].item()
|
19 |
+
return f"{label} ({confidence:.2%})"
|
20 |
+
|
21 |
+
# Gradio UI
|
22 |
+
title = "Car Classification (Brand, Model & Year)"
|
23 |
+
description = "Upload a car image to identify its brand, model, and year of production."
|
24 |
+
|
25 |
+
demo = gr.Interface(
|
26 |
+
fn=classify_car,
|
27 |
+
inputs=gr.Image(type="pil", label="Upload Car Image"),
|
28 |
+
outputs=gr.Text(label="Prediction"),
|
29 |
+
title=title,
|
30 |
+
description=description
|
31 |
+
)
|
32 |
+
|
33 |
+
if __name__ == "__main__":
|
34 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
+
Pillow
|