Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +181 -0
- config.py +10 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
from sentence_transformers import SentenceTransformer, util
|
5 |
+
import numpy as np
|
6 |
+
import requests
|
7 |
+
import gradio.themes as grthemes
|
8 |
+
import config
|
9 |
+
|
10 |
+
# ----------------------
|
11 |
+
# Paraphrasing Model Setup
|
12 |
+
# ----------------------
|
13 |
+
PARAPHRASE_MODEL_NAME = "Vamsi/T5_Paraphrase_Paws"
|
14 |
+
paraphrase_tokenizer = AutoTokenizer.from_pretrained(PARAPHRASE_MODEL_NAME)
|
15 |
+
paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained(PARAPHRASE_MODEL_NAME)
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
paraphrase_model = paraphrase_model.to(device)
|
18 |
+
|
19 |
+
# ----------------------
|
20 |
+
# Semantic Similarity Model
|
21 |
+
# ----------------------
|
22 |
+
similarity_model = SentenceTransformer('all-MiniLM-L6-v2')
|
23 |
+
|
24 |
+
# ----------------------
|
25 |
+
# Tone Templates
|
26 |
+
# ----------------------
|
27 |
+
tone_templates = {
|
28 |
+
"Academic": "Paraphrase the following text in a formal, academic tone:",
|
29 |
+
"Casual": "Paraphrase the following text in a casual, conversational tone:",
|
30 |
+
"Friendly": "Paraphrase the following text in a friendly, approachable tone:",
|
31 |
+
"Stealth": "Paraphrase the following text to bypass AI detectors and sound as human as possible:",
|
32 |
+
}
|
33 |
+
|
34 |
+
# ----------------------
|
35 |
+
# Paraphrasing Function
|
36 |
+
# ----------------------
|
37 |
+
def paraphrase(text, tone):
|
38 |
+
prompt = tone_templates[tone] + " " + text
|
39 |
+
input_ids = paraphrase_tokenizer.encode(prompt, return_tensors="pt", max_length=256, truncation=True).to(device)
|
40 |
+
outputs = paraphrase_model.generate(
|
41 |
+
input_ids,
|
42 |
+
do_sample=True,
|
43 |
+
top_k=120,
|
44 |
+
top_p=0.95,
|
45 |
+
temperature=0.7,
|
46 |
+
repetition_penalty=1.2,
|
47 |
+
max_length=256,
|
48 |
+
num_return_sequences=1
|
49 |
+
)
|
50 |
+
paraphrased = paraphrase_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
51 |
+
return paraphrased
|
52 |
+
|
53 |
+
# ----------------------
|
54 |
+
# Semantic Similarity Function
|
55 |
+
# ----------------------
|
56 |
+
def semantic_similarity(text1, text2):
|
57 |
+
emb1 = similarity_model.encode(text1, convert_to_tensor=True)
|
58 |
+
emb2 = similarity_model.encode(text2, convert_to_tensor=True)
|
59 |
+
sim = util.pytorch_cos_sim(emb1, emb2).item()
|
60 |
+
return sim
|
61 |
+
|
62 |
+
# ----------------------
|
63 |
+
# Real AI Detection (Winston AI API)
|
64 |
+
# ----------------------
|
65 |
+
def check_ai_score(text):
|
66 |
+
api_key = config.WINSTON_AI_API_KEY
|
67 |
+
api_url = config.WINSTON_AI_API_URL
|
68 |
+
if not api_key:
|
69 |
+
return None, "No API key set. Please add your Winston AI API key to config.py."
|
70 |
+
headers = {
|
71 |
+
"Authorization": f"Bearer {api_key}",
|
72 |
+
"Content-Type": "application/json"
|
73 |
+
}
|
74 |
+
data = {"text": text, "sentences": False}
|
75 |
+
try:
|
76 |
+
response = requests.post(api_url, headers=headers, json=data, timeout=30)
|
77 |
+
if response.status_code == 200:
|
78 |
+
result = response.json()
|
79 |
+
# Winston AI returns a 'score' (0-100, higher = more human)
|
80 |
+
score = result.get("score", None)
|
81 |
+
if score is not None:
|
82 |
+
ai_prob = 1.0 - (score / 100.0)
|
83 |
+
return ai_prob, None
|
84 |
+
else:
|
85 |
+
return None, "No score in Winston AI response."
|
86 |
+
else:
|
87 |
+
return None, f"Winston AI error: {response.status_code} {response.text}"
|
88 |
+
except Exception as e:
|
89 |
+
return None, f"Winston AI exception: {str(e)}"
|
90 |
+
|
91 |
+
# ----------------------
|
92 |
+
# Humanization Score & Rating
|
93 |
+
# ----------------------
|
94 |
+
def humanization_score(sim, ai_prob):
|
95 |
+
# Lower similarity and lower AI probability = more human
|
96 |
+
score = (1.0 - sim) * 0.5 + (1.0 - ai_prob) * 0.5
|
97 |
+
return score
|
98 |
+
|
99 |
+
def humanization_rating(score):
|
100 |
+
if score < 0.7:
|
101 |
+
return f"⚠️ Still AI-like ({score:.2f})"
|
102 |
+
elif score < 0.85:
|
103 |
+
return f"👍 Acceptable ({score:.2f})"
|
104 |
+
else:
|
105 |
+
return f"✅ Highly Humanized ({score:.2f})"
|
106 |
+
|
107 |
+
# ----------------------
|
108 |
+
# Main Processing Function
|
109 |
+
# ----------------------
|
110 |
+
def process(text, tone):
|
111 |
+
if not text.strip():
|
112 |
+
return "", "", 0.0, "", 0.0, ""
|
113 |
+
# Pre-humanization AI detection
|
114 |
+
pre_ai_prob, pre_err = check_ai_score(text)
|
115 |
+
if pre_ai_prob is None:
|
116 |
+
return "", f"AI Detection Error: {pre_err}", 0.0, "", 0.0, ""
|
117 |
+
# Paraphrase
|
118 |
+
try:
|
119 |
+
paraphrased = paraphrase(text, tone)
|
120 |
+
except Exception as e:
|
121 |
+
return f"[Paraphrasing error: {str(e)}]", "", 0.0, "", 0.0, ""
|
122 |
+
# Post-humanization AI detection
|
123 |
+
post_ai_prob, post_err = check_ai_score(paraphrased)
|
124 |
+
if post_ai_prob is None:
|
125 |
+
return paraphrased, f"AI Detection Error: {post_err}", 0.0, "", 0.0, ""
|
126 |
+
# Semantic similarity
|
127 |
+
sim = semantic_similarity(text, paraphrased)
|
128 |
+
# Humanization score
|
129 |
+
score = humanization_score(sim, post_ai_prob)
|
130 |
+
rating = humanization_rating(score)
|
131 |
+
ai_score_str = f"Pre: {100*(1-pre_ai_prob):.1f}% human | Post: {100*(1-post_ai_prob):.1f}% human"
|
132 |
+
return (
|
133 |
+
paraphrased, # gr.Textbox (string)
|
134 |
+
ai_score_str, # gr.Markdown (string)
|
135 |
+
sim, # gr.Number (float)
|
136 |
+
rating, # gr.Markdown (string)
|
137 |
+
score * 100, # gr.Number (float)
|
138 |
+
""
|
139 |
+
)
|
140 |
+
|
141 |
+
# ----------------------
|
142 |
+
# Gradio UI
|
143 |
+
# ----------------------
|
144 |
+
custom_theme = grthemes.Base(
|
145 |
+
primary_hue="blue",
|
146 |
+
secondary_hue="blue",
|
147 |
+
neutral_hue="slate"
|
148 |
+
)
|
149 |
+
|
150 |
+
with gr.Blocks(theme=custom_theme, title="AI Humanizer - Made by Taha") as demo:
|
151 |
+
gr.Markdown("""
|
152 |
+
# 🧠 AI Humanizer
|
153 |
+
<div style='display:flex;justify-content:space-between;align-items:center;'>
|
154 |
+
<span style='font-size:1.2em;color:#7bb1ff;'>Rewrite AI text to sound 100% human</span>
|
155 |
+
<span style='font-weight:bold;color:#7bb1ff;'>Made by Taha</span>
|
156 |
+
</div>
|
157 |
+
""", elem_id="header")
|
158 |
+
with gr.Row():
|
159 |
+
with gr.Column():
|
160 |
+
text_in = gr.Textbox(label="Paste AI-generated text here", lines=8, placeholder="Paste your text...", elem_id="input-box")
|
161 |
+
tone = gr.Dropdown(["Academic", "Casual", "Friendly", "Stealth"], value="Stealth", label="Tone Selector")
|
162 |
+
btn = gr.Button("Humanize", elem_id="humanize-btn")
|
163 |
+
with gr.Column():
|
164 |
+
text_out = gr.Textbox(label="Humanized Output", lines=8, interactive=False, elem_id="output-box")
|
165 |
+
ai_scores = gr.Markdown("", elem_id="ai-scores")
|
166 |
+
sim_score = gr.Number(label="Similarity (0=very different, 1=very similar)", interactive=False)
|
167 |
+
rating = gr.Markdown("", elem_id="rating")
|
168 |
+
human_score = gr.Number(label="Humanization Score (%)", interactive=False)
|
169 |
+
btn.click(
|
170 |
+
process,
|
171 |
+
inputs=[text_in, tone],
|
172 |
+
outputs=[text_out, ai_scores, sim_score, rating, human_score, gr.Textbox(visible=False)],
|
173 |
+
api_name="humanize"
|
174 |
+
)
|
175 |
+
gr.Markdown("""
|
176 |
+
<div style='text-align:center;color:#7bb1ff;margin-top:2em;'>
|
177 |
+
<b>Made by Taha</b> | Free for unlimited use | Optimized for students and creators
|
178 |
+
</div>
|
179 |
+
""", elem_id="footer")
|
180 |
+
|
181 |
+
demo.launch()
|
config.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# config.py
|
2 |
+
# Place your API keys and endpoints here for AI detection services
|
3 |
+
|
4 |
+
WINSTON_AI_API_KEY = "5lC2zMKk3cDVUhk2augozEK9jZYEUiGYfcqKIEC2bee7261a" # Add your Winston AI API key here
|
5 |
+
WINSTON_AI_API_URL = "https://api.gowinston.ai/v2/ai-content-detection" # Official v2 endpoint for text detection
|
6 |
+
|
7 |
+
SAPLING_API_KEY = ""
|
8 |
+
SAPLING_API_URL = "https://api.sapling.ai/api/v1/aidetect" # Example, update as needed
|
9 |
+
|
10 |
+
# Add more as needed
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=3.50.2
|
2 |
+
transformers>=4.40.0
|
3 |
+
torch>=2.0.0
|
4 |
+
sentence-transformers>=2.6.1
|
5 |
+
sentencepiece>=0.1.99
|
6 |
+
requests>=2.31.0
|
7 |
+
scikit-learn>=1.0.2
|
8 |
+
numpy>=1.21.0
|
9 |
+
# For Hugging Face Spaces and API integration
|