import gradio as gr from transformers import T5Tokenizer, T5ForConditionalGeneration from sentence_transformers import SentenceTransformer, util import torch # Load models tokenizer = T5Tokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws", use_fast=False) model = T5ForConditionalGeneration.from_pretrained("Vamsi/T5_Paraphrase_Paws") similarity_model = SentenceTransformer('all-MiniLM-L6-v2') # Tone prompt variations tone_prompts = { "Academic": "Rewrite this in a formal and academic way:", "Casual": "Rewrite this in a casual and relaxed way:", "Friendly": "Make this sound like a friendly human wrote it:", "Stealth (AI Detection Bypass)": "Reword this to avoid AI detection and sound natural:" } def generate_paraphrase(text, tone): prompt = tone_prompts.get(tone, "Paraphrase:") input_text = f"{prompt} {text.strip()}" input_ids = tokenizer.encode(input_text, return_tensors="pt", max_length=256, truncation=True) output_ids = model.generate( input_ids, max_length=80, num_return_sequences=1, do_sample=True, top_k=120, top_p=0.95 ) return tokenizer.decode(output_ids[0], skip_special_tokens=True) def humanize_text(input_text, tone): if not input_text.strip(): return "Please enter some text.", "", "" # Generate output output_text = generate_paraphrase(input_text, tone) # Compute semantic similarity emb1 = similarity_model.encode(input_text, convert_to_tensor=True) emb2 = similarity_model.encode(output_text, convert_to_tensor=True) similarity_score = util.pytorch_cos_sim(emb1, emb2).item() score_description = "✅ Very Human-Like" if similarity_score < 0.9 else "⚠️ May Still Sound AI-Generated" return output_text, f"{similarity_score:.2f}", score_description # UI with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("## 🧠 Taha's AI Humanizer Tool") gr.Markdown("*Rewriting AI-generated text to sound real, authentic, and undetectable — made by Taha.*") with gr.Row(): input_text = gr.Textbox(lines=6, label="📝 Enter Your AI-Sounding Text") output_text = gr.Textbox(lines=6, label="✅ Humanized Output") tone = gr.Radio(["Academic", "Casual", "Friendly", "Stealth (AI Detection Bypass)"], label="🎯 Select Tone", value="Stealth (AI Detection Bypass)") with gr.Row(): similarity = gr.Textbox(label="🔍 Semantic Similarity Score") score_label = gr.Textbox(label="🧠 Humanization Check") gr.Button("🚀 Humanize It").click(fn=humanize_text, inputs=[input_text, tone], outputs=[output_text, similarity, score_label]) demo.launch()