Humanizer-Taha / app.py
taha092's picture
Update app.py
3f14bc0 verified
import gradio as gr
from transformers import T5Tokenizer, T5ForConditionalGeneration
from sentence_transformers import SentenceTransformer, util
import torch
# Load models
tokenizer = T5Tokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws", use_fast=False)
model = T5ForConditionalGeneration.from_pretrained("Vamsi/T5_Paraphrase_Paws")
similarity_model = SentenceTransformer('all-MiniLM-L6-v2')
# Tone prompt variations
tone_prompts = {
"Academic": "Rewrite this in a formal and academic way:",
"Casual": "Rewrite this in a casual and relaxed way:",
"Friendly": "Make this sound like a friendly human wrote it:",
"Stealth (AI Detection Bypass)": "Reword this to avoid AI detection and sound natural:"
}
def generate_paraphrase(text, tone):
prompt = tone_prompts.get(tone, "Paraphrase:")
input_text = f"{prompt} {text.strip()}"
input_ids = tokenizer.encode(input_text, return_tensors="pt", max_length=256, truncation=True)
output_ids = model.generate(
input_ids,
max_length=80,
num_return_sequences=1,
do_sample=True,
top_k=120,
top_p=0.95
)
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
def humanize_text(input_text, tone):
if not input_text.strip():
return "Please enter some text.", "", ""
# Generate output
output_text = generate_paraphrase(input_text, tone)
# Compute semantic similarity
emb1 = similarity_model.encode(input_text, convert_to_tensor=True)
emb2 = similarity_model.encode(output_text, convert_to_tensor=True)
similarity_score = util.pytorch_cos_sim(emb1, emb2).item()
score_description = "βœ… Very Human-Like" if similarity_score < 0.9 else "⚠️ May Still Sound AI-Generated"
return output_text, f"{similarity_score:.2f}", score_description
# UI
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("## 🧠 Taha's AI Humanizer Tool")
gr.Markdown("*Rewriting AI-generated text to sound real, authentic, and undetectable β€” made by Taha.*")
with gr.Row():
input_text = gr.Textbox(lines=6, label="πŸ“ Enter Your AI-Sounding Text")
output_text = gr.Textbox(lines=6, label="βœ… Humanized Output")
tone = gr.Radio(["Academic", "Casual", "Friendly", "Stealth (AI Detection Bypass)"], label="🎯 Select Tone", value="Stealth (AI Detection Bypass)")
with gr.Row():
similarity = gr.Textbox(label="πŸ” Semantic Similarity Score")
score_label = gr.Textbox(label="🧠 Humanization Check")
gr.Button("πŸš€ Humanize It").click(fn=humanize_text, inputs=[input_text, tone], outputs=[output_text, similarity, score_label])
demo.launch()