Spaces:
Running
Running
File size: 1,912 Bytes
8d9aa9c a2409a8 7e27968 9d3a5fa a2409a8 7e27968 a2409a8 7e27968 a2409a8 7e27968 a2409a8 7e27968 a2409a8 7e27968 a2409a8 7e27968 a2409a8 3e9e9c9 a2409a8 8d9aa9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
title: clip-tagger
emoji: π΅
colorFrom: blue
colorTo: purple
sdk: static
pinned: false
license: mit
---
# π΅ clip-tagger
**π [Live Demo](https://huggingface.co/spaces/sohei1l/clip-tagger) β’ π¦ [Model Repository](https://huggingface.co/sohei1l/clip-tagger)**
> Custom audio tagging in the browser using CLAP (Contrastive Language-Audio Pre-training)
Instantly tag any audio with AI that learns from your corrections. Upload files or record directly in your browser - everything runs locally, no servers needed.
## β¨ Features
- **π€ Audio Input**: Upload files or record directly from your microphone
- **π§ Smart Tagging**: CLAP model identifies speech, music, ambient sounds, and more
- **π Personalized Learning**: Correct tags and add custom ones - the model adapts to your domain
- **πΎ Persistent Memory**: Your corrections are saved and improve future predictions
- **π Export Ready**: Export tagged data and trained models for sharing
- **π Privacy First**: Everything runs in your browser - no data leaves your device
## π How It Works
1. **Drop an audio file** or click record
2. **Review AI-generated tags** with confidence scores
3. **Correct tags** with β/β buttons or add custom tags
4. **Watch the model learn** from your feedback in real-time
5. **Export results** or share your trained model
## π§ Technical Details
- **Model**: [Xenova/clap-htsat-unfused](https://huggingface.co/Xenova/clap-htsat-unfused) (~45MB)
- **Framework**: [Transformers.js](https://github.com/xenova/transformers.js) + React
- **Storage**: IndexedDB for user feedback and model weights
- **Deployment**: Ready for Hugging Face Spaces
## π― Use Cases
- Voice memo organization
- Music library tagging
- Audio content moderation
- Podcast categorization
- Sound effect libraries
- Research datasets
---
*Powered by Transformers.js β’ Runs entirely in your browser* |