Spaces:
Sleeping
Sleeping
initial commit
Browse files- .gitignore +163 -0
- app.py +81 -0
- requirements.txt +3 -0
- src/__init__.py +1 -0
- src/ckpt/checkpoint_here.txt +0 -0
- src/distilbert_tf.py +72 -0
.gitignore
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
161 |
+
|
162 |
+
# Checkpoints
|
163 |
+
src/ckpt/*.pt
|
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
if gr.NO_RELOAD:
|
5 |
+
import numpy as np
|
6 |
+
from src.distilbert_tf import DistilBertTransferLearningModel
|
7 |
+
|
8 |
+
|
9 |
+
DEVICE = 'cpu'
|
10 |
+
MODELS = [
|
11 |
+
(
|
12 |
+
'distilbert-1linear-1650',
|
13 |
+
lambda: DistilBertTransferLearningModel(
|
14 |
+
'distilbert-base-uncased',
|
15 |
+
[
|
16 |
+
('linear', ['in', 'out']),
|
17 |
+
('softmax'),
|
18 |
+
],
|
19 |
+
2,
|
20 |
+
device=DEVICE,
|
21 |
+
state_dict='src/ckpt/distilbert-1linear-dataset-all-augmented-all-1650.pt',
|
22 |
+
),
|
23 |
+
),
|
24 |
+
]
|
25 |
+
|
26 |
+
|
27 |
+
class WebUI:
|
28 |
+
|
29 |
+
def __init__(self, models: list[(str, Callable)] = [], device: str = 'cpu') -> None:
|
30 |
+
self.models = models
|
31 |
+
self.device = device
|
32 |
+
self.model = self.models[0][1]()
|
33 |
+
|
34 |
+
def _change_model(self, idx: int) -> None:
|
35 |
+
if gr.NO_RELOAD:
|
36 |
+
try:
|
37 |
+
print(self.models[idx])
|
38 |
+
del self.model
|
39 |
+
self.model = self.models[idx][1]()
|
40 |
+
print('done loading')
|
41 |
+
except Exception as e:
|
42 |
+
print(e)
|
43 |
+
gr.Error(e)
|
44 |
+
|
45 |
+
def _predict(self, text: str) -> str:
|
46 |
+
print(text)
|
47 |
+
output = self.model.predict(text, self.device).detach().cpu().numpy()[0]
|
48 |
+
return f'Fake: {output[0]}, Real: {output[1]}'
|
49 |
+
|
50 |
+
def get_ui(self) -> None:
|
51 |
+
with gr.Blocks() as ui:
|
52 |
+
with gr.Row():
|
53 |
+
with gr.Column():
|
54 |
+
t_inp = gr.Textbox(label='Input')
|
55 |
+
with gr.Row():
|
56 |
+
btn_reset = gr.ClearButton(
|
57 |
+
value='Reset',
|
58 |
+
components=[
|
59 |
+
t_inp,
|
60 |
+
],
|
61 |
+
)
|
62 |
+
btn_submit = gr.Button(value='Submit', variant='primary')
|
63 |
+
with gr.Column():
|
64 |
+
ddl_model = gr.Dropdown(
|
65 |
+
label='Model',
|
66 |
+
choices=[model[0] for model in self.models],
|
67 |
+
value=self.models[0][0],
|
68 |
+
type='index',
|
69 |
+
interactive=True,
|
70 |
+
filterable=True,
|
71 |
+
)
|
72 |
+
t_out = gr.Textbox(label='Output')
|
73 |
+
ddl_model.change(fn=self._change_model, inputs=ddl_model)
|
74 |
+
btn_submit.click(fn=self._predict, inputs=t_inp, outputs=t_out)
|
75 |
+
return ui
|
76 |
+
|
77 |
+
|
78 |
+
webui = WebUI(models=MODELS, device=DEVICE).get_ui()
|
79 |
+
|
80 |
+
if __name__ == '__main__':
|
81 |
+
webui.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.26.4
|
2 |
+
torch==2.2.1
|
3 |
+
transformers==4.39.3
|
src/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .distilbert_tf import DistilBertTransferLearningModel
|
src/ckpt/checkpoint_here.txt
ADDED
File without changes
|
src/distilbert_tf.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Optional, Tuple, Union
|
2 |
+
import torch
|
3 |
+
import transformers
|
4 |
+
|
5 |
+
|
6 |
+
class DistilBertTransferLearningModel(torch.nn.Module):
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
pretrained_model: str = "distilbert-base-uncased",
|
11 |
+
layers: list[Tuple[str, Optional[list[Any]]]] = [
|
12 |
+
('linear', ['in', 'out']),
|
13 |
+
('softmax'),
|
14 |
+
],
|
15 |
+
dim_out: int = 2,
|
16 |
+
use_local_file: bool = False,
|
17 |
+
device: str = 'cpu',
|
18 |
+
state_dict: Optional[Union[str, dict]] = None,
|
19 |
+
):
|
20 |
+
super(DistilBertTransferLearningModel, self).__init__()
|
21 |
+
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
|
22 |
+
pretrained_model, local_files_only=use_local_file
|
23 |
+
)
|
24 |
+
self.base_model = transformers.AutoModel.from_pretrained(
|
25 |
+
pretrained_model, local_files_only=use_local_file
|
26 |
+
)
|
27 |
+
clf_layers = []
|
28 |
+
for layer in layers:
|
29 |
+
layer_type = layer[0] if isinstance(layer, tuple) else layer
|
30 |
+
if layer_type == 'linear':
|
31 |
+
layer_in, layer_out = [
|
32 |
+
(
|
33 |
+
self.base_model.config.hidden_size
|
34 |
+
if x == 'in'
|
35 |
+
else dim_out if x == 'out' else x
|
36 |
+
)
|
37 |
+
for x in layer[1]
|
38 |
+
]
|
39 |
+
clf_layers.append(torch.nn.Linear(layer_in, layer_out))
|
40 |
+
elif layer_type == 'softmax':
|
41 |
+
clf_layers.append(torch.nn.Softmax(dim=-1))
|
42 |
+
self.clf = torch.nn.Sequential(*clf_layers)
|
43 |
+
|
44 |
+
if state_dict is not None:
|
45 |
+
if isinstance(state_dict, str) and state_dict.endswith('.pt'):
|
46 |
+
if device == 'cpu':
|
47 |
+
state_dict = torch.load(state_dict, map_location='cpu')
|
48 |
+
else:
|
49 |
+
state_dict = torch.load(state_dict)
|
50 |
+
self.load_state_dict(state_dict)
|
51 |
+
|
52 |
+
def forward(self, ids: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
|
53 |
+
y = self.base_model(ids, attention_mask=mask, return_dict=False)[0][:, 0]
|
54 |
+
y = self.clf(y)
|
55 |
+
return y
|
56 |
+
|
57 |
+
def predict(self, text: str, device: str) -> torch.Tensor:
|
58 |
+
encoded = self.tokenizer.encode_plus(
|
59 |
+
text,
|
60 |
+
add_special_tokens=True,
|
61 |
+
return_token_type_ids=False,
|
62 |
+
return_attention_mask=True,
|
63 |
+
max_length=512,
|
64 |
+
padding='max_length',
|
65 |
+
truncation=True,
|
66 |
+
return_tensors='pt',
|
67 |
+
)
|
68 |
+
with torch.no_grad():
|
69 |
+
ids = encoded['input_ids'].to(device)
|
70 |
+
mask = encoded['attention_mask'].to(device)
|
71 |
+
output = self.forward(ids, mask)
|
72 |
+
return output.to(device)
|