a vh @sddlZddlmZddlZddlmmZddlmZmZddl Z ddl m Z ddl mZmZmZmZmZmZmZmZmZddlZeeZGdddeZddZd d ZdS) N)CrossEntropyLossBCEWithLogitsLoss) MyTokenizer) RobertaConfig RobertaModelRobertaTokenizer BartConfigBartForConditionalGeneration BartTokenizerT5ConfigT5ForConditionalGeneration T5TokenizercsBeZdZfddZddZfddZddZd d d ZZS) ReviewerModelcs.t|tj|jjddd|_|dS)NT)bias)super__init__nnLinearconfigd_modelcls_headinit)selfr __class__2/Users/akhilshekkari/Desktop/github-test/models.pyrs zReviewerModel.__init__cCsJtj|jj|jj}|jjjj d||jj dd|jj j dS)Ng)meanstd) rrxavier_uniform_lm_headweightrZinitializer_factorrdatanormal_rrzero_)rfactorrrrrs  zReviewerModel.initc sd|vr@d|vr d|vr d|vs$J|j|d|d|ddSd|vrd|vrpd|vrpd|vrpd|vrpd|vsxJd |d}|d}|d}|d}|d}d |vrd }n|d }|||||||Stj|i|S) a Doc from Huggingface transformers: labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[-100, 0, ..., config.vocab_size - 1]`. All labels set to ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]`` Returns: Examples:: >>> from transformers import T5Tokenizer, T5ForConditionalGeneration >>> tokenizer = T5Tokenizer.from_pretrained('t5-small') >>> model = T5ForConditionalGeneration.from_pretrained('t5-small') >>> # training >>> input_ids = tokenizer('The walks in park', return_tensors='pt').input_ids >>> labels = tokenizer(' cute dog the ', return_tensors='pt').input_ids >>> outputs = model(input_ids=input_ids, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits >>> # inference >>> input_ids = tokenizer("summarize: studies have shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model.generate(input_ids) >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) >>> # studies have shown that owning a dog is good for you. cls input_idslabelsattention_mask)r)r*r+ input_labelsdecoder_input_idsdecoder_attention_maskzPlease give these arg keys. encoder_lossT)r(review_forwardrforward) rargvkwargsr)r,r-r+r.r/rrrr1&sFzReviewerModel.forwardc Csh|j||ddd}|d}|dddddf}td|}||}t}|dkrd|||} | S|S)NFr)r+output_attentions return_dictrg333333?)encoderrDropoutrr) rr)r*r+encoder_outputs hidden_statesZ first_hiddenlogitsZloss_fctlossrrrr(_s  zReviewerModel.clsTcCs|j||ddd}|d}||} |j| |||ddd} | d} |jjrX| |jd} |rrtj||j j } | | } |durt dd}|| d| d| d}|r|durt dd}||| d| d| d7}|S| | fS) NFr4r)r)r+Zencoder_hidden_statesZencoder_attention_maskr5r6r) ignore_indexi)r7Z _shift_rightdecoderrZtie_word_embeddingsZ model_dimr functionallinearZget_input_embeddingsr#r"rviewsize)rr)r,r-r+r.r/r9r:Zdecoder_inputsZdecoder_outputsZsequence_outputZ cls_logitsZ lm_logitsZ lm_loss_fctr<Z cls_loss_fctrrrr0us<      "zReviewerModel.review_forward)T) __name__ __module__ __qualname__rrr1r(r0 __classcell__rrrrrs   9rcCs6tdd|}tdd|D}dt|dS)NcSs|jS)N) requires_grad)prrrz get_model_size..cSsg|]}t|qSr)npprodrC).0rIrrr rKz"get_model_size..z{}Mg.A)filter parameterssumformatround)modelmodel_parametersZ model_sizerrrget_model_sizesrWc sttt}}}||j}||j|j|j|d}fddtdddD_d_d_ d_ d _ d _ d _ d _d _d_d_tdt||j|jdurtj|jd}td|z|tj|ddWn:tyr|j}d|_|tj|dd||_Yn0||j ||fS)N)rcs*i|]"}d|dd|dqS)z) get_vocab)rNi tokenizerrr sz+build_or_load_gen_model..cr>zzzzzzzzzzz!Finish loading model [%s] from %szpytorch_model.binzReload model from {}cpu) map_location)!r rrfrom_pretrainedZmodel_name_or_pathrangeZ special_dictrYZmask_idbos_idpad_ideos_idZmsg_idkeep_idZadd_idZdel_idstart_idend_idloggerinforWZload_model_pathospathjoinrSload_state_dicttorchload RuntimeErrorrto local_rank)argsZ config_classZ model_classZtokenizer_classrrU model_pathsavedrr[rbuild_or_load_gen_modelsD       rw)rktorch.nnrroZtorch.nn.functionalr@FrrnumpyrLutilsrZ transformersrrrrr r r r r logging getLoggerrDrirrWrwrrrrs  ,