import timm import torch from PIL import Image from torchvision import transforms import requests from io import BytesIO def load_model(): """Load the pre-trained model.""" model = timm.create_model("hf_hub:timm/vit_large_patch14_clip_336.laion2b_ft_in12k_in1k_inat21", pretrained=True) model.eval() return model def get_label_names(): """Fetch the class labels from the Hugging Face Hub.""" config_url = "https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in12k_in1k_inat21/resolve/main/config.json" response = requests.get(config_url) response.raise_for_status() config = response.json() return config["label_names"] def preprocess_image(image_url): """Fetch and preprocess the image.""" preprocess = transforms.Compose([ transforms.Resize(336), transforms.CenterCrop(336), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) response = requests.get(image_url) response.raise_for_status() image = Image.open(BytesIO(response.content)) input_tensor = preprocess(image).unsqueeze(0) # Add a batch dimension return input_tensor def predict_species(model, image_url, label_names): """Make a prediction using the model.""" input_tensor = preprocess_image(image_url) # Move to GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) input_tensor = input_tensor.to(device) # Make prediction with torch.no_grad(): output = model(input_tensor) _, predicted_class = torch.max(output, 1) # Map prediction to species predicted_species = label_names[predicted_class.item()] return predicted_species #finish