Commit
·
e3e177e
0
Parent(s):
Initial Docker ML app deployment
Browse files- .gitignore +25 -0
- DockerFIle +22 -0
- app.py +28 -0
- model.py +58 -0
- requirements.txt +7 -0
.gitignore
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# See https://help.github.com/articles/ignoring-files/ for more about ignoring files.
|
2 |
+
|
3 |
+
# dependencies
|
4 |
+
/node_modules
|
5 |
+
/.pnp
|
6 |
+
.pnp.js
|
7 |
+
/venv
|
8 |
+
/__pycache__
|
9 |
+
/myenv
|
10 |
+
# testing
|
11 |
+
/coverage
|
12 |
+
|
13 |
+
# production
|
14 |
+
/build
|
15 |
+
|
16 |
+
# misc
|
17 |
+
.DS_Store
|
18 |
+
.env.local
|
19 |
+
.env.development.local
|
20 |
+
.env.test.local
|
21 |
+
.env.production.local
|
22 |
+
|
23 |
+
npm-debug.log*
|
24 |
+
yarn-debug.log*
|
25 |
+
yarn-error.log*
|
DockerFIle
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
|
3 |
+
# Create a non-root user like Hugging Face recommends
|
4 |
+
RUN useradd -m -u 1000 user
|
5 |
+
USER user
|
6 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
7 |
+
|
8 |
+
# Set working directory
|
9 |
+
WORKDIR /app
|
10 |
+
|
11 |
+
# Install Python dependencies
|
12 |
+
COPY --chown=user requirements.txt requirements.txt
|
13 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
14 |
+
|
15 |
+
# Copy the rest of the app
|
16 |
+
COPY --chown=user . /app
|
17 |
+
|
18 |
+
# Expose port
|
19 |
+
EXPOSE 7860
|
20 |
+
|
21 |
+
# Start Flask app
|
22 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
+
from flask_cors import CORS
|
3 |
+
from model import load_model, predict_species, get_label_names
|
4 |
+
|
5 |
+
app = Flask(__name__)
|
6 |
+
|
7 |
+
CORS(app)
|
8 |
+
|
9 |
+
# Load model once
|
10 |
+
model = load_model()
|
11 |
+
label_names = get_label_names()
|
12 |
+
|
13 |
+
@app.route('/predict', methods=['GET'])
|
14 |
+
def predict():
|
15 |
+
image_url = request.args.get('url')
|
16 |
+
if not image_url:
|
17 |
+
return jsonify({'error': 'URL parameter is missing'}), 400
|
18 |
+
|
19 |
+
try:
|
20 |
+
predicted_species = predict_species(model, image_url, label_names)
|
21 |
+
return jsonify({'species': predicted_species})
|
22 |
+
except Exception as e:
|
23 |
+
return jsonify({'error': str(e)}), 500
|
24 |
+
|
25 |
+
if __name__ == '__main__':
|
26 |
+
import os
|
27 |
+
app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))
|
28 |
+
|
model.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import timm
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from torchvision import transforms
|
5 |
+
import requests
|
6 |
+
from io import BytesIO
|
7 |
+
|
8 |
+
|
9 |
+
def load_model():
|
10 |
+
"""Load the pre-trained model."""
|
11 |
+
model = timm.create_model("hf_hub:timm/vit_large_patch14_clip_336.laion2b_ft_in12k_in1k_inat21", pretrained=True)
|
12 |
+
model.eval()
|
13 |
+
return model
|
14 |
+
|
15 |
+
|
16 |
+
def get_label_names():
|
17 |
+
"""Fetch the class labels from the Hugging Face Hub."""
|
18 |
+
config_url = "https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in12k_in1k_inat21/resolve/main/config.json"
|
19 |
+
response = requests.get(config_url)
|
20 |
+
response.raise_for_status()
|
21 |
+
config = response.json()
|
22 |
+
return config["label_names"]
|
23 |
+
|
24 |
+
|
25 |
+
def preprocess_image(image_url):
|
26 |
+
"""Fetch and preprocess the image."""
|
27 |
+
preprocess = transforms.Compose([
|
28 |
+
transforms.Resize(336),
|
29 |
+
transforms.CenterCrop(336),
|
30 |
+
transforms.ToTensor(),
|
31 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
32 |
+
])
|
33 |
+
|
34 |
+
response = requests.get(image_url)
|
35 |
+
response.raise_for_status()
|
36 |
+
image = Image.open(BytesIO(response.content))
|
37 |
+
input_tensor = preprocess(image).unsqueeze(0) # Add a batch dimension
|
38 |
+
return input_tensor
|
39 |
+
|
40 |
+
|
41 |
+
def predict_species(model, image_url, label_names):
|
42 |
+
"""Make a prediction using the model."""
|
43 |
+
input_tensor = preprocess_image(image_url)
|
44 |
+
|
45 |
+
# Move to GPU if available
|
46 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
47 |
+
model = model.to(device)
|
48 |
+
input_tensor = input_tensor.to(device)
|
49 |
+
|
50 |
+
# Make prediction
|
51 |
+
with torch.no_grad():
|
52 |
+
output = model(input_tensor)
|
53 |
+
_, predicted_class = torch.max(output, 1)
|
54 |
+
|
55 |
+
# Map prediction to species
|
56 |
+
predicted_species = label_names[predicted_class.item()]
|
57 |
+
return predicted_species
|
58 |
+
#finish
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flask
|
2 |
+
flask-cors
|
3 |
+
timm
|
4 |
+
torch
|
5 |
+
torchvision
|
6 |
+
pillow
|
7 |
+
requests
|