Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import uvicorn
|
2 |
-
from fastapi import FastAPI, HTTPException
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
4 |
from pydantic import BaseModel
|
5 |
from sentence_transformers import SentenceTransformer
|
@@ -9,13 +9,12 @@ import os
|
|
9 |
from contextlib import asynccontextmanager
|
10 |
|
11 |
# --- Environment Setup ---
|
12 |
-
# It's best practice to get sensitive keys from environment variables
|
13 |
-
# We will set these up in Hugging Face Spaces Secrets
|
14 |
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
|
15 |
PINECONE_INDEX_NAME = os.getenv("PINECONE_INDEX_NAME", "memoria-index")
|
|
|
|
|
16 |
|
17 |
# --- Global objects ---
|
18 |
-
# We load these once at startup to save time and memory
|
19 |
model = None
|
20 |
pc = None
|
21 |
index = None
|
@@ -33,8 +32,12 @@ async def lifespan(app: FastAPI):
|
|
33 |
raise ValueError("PINECONE_API_KEY environment variable not set.")
|
34 |
|
35 |
# 1. Load the AI Model
|
36 |
-
print("Loading
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
print("Model loaded.")
|
39 |
|
40 |
# 2. Connect to Pinecone
|
@@ -47,15 +50,16 @@ async def lifespan(app: FastAPI):
|
|
47 |
pc.create_index(
|
48 |
name=PINECONE_INDEX_NAME,
|
49 |
dimension=model.get_sentence_embedding_dimension(),
|
50 |
-
metric="cosine",
|
51 |
spec=ServerlessSpec(cloud="aws", region="us-east-1")
|
52 |
)
|
53 |
index = pc.Index(PINECONE_INDEX_NAME)
|
54 |
print("Pinecone setup complete.")
|
55 |
yield
|
56 |
-
# Cleanup logic can go here if needed on shutdown
|
57 |
print("Application shutdown.")
|
58 |
|
|
|
|
|
59 |
# --- Pydantic Models ---
|
60 |
class Memory(BaseModel):
|
61 |
content: str
|
@@ -67,13 +71,13 @@ class SearchQuery(BaseModel):
|
|
67 |
app = FastAPI(
|
68 |
title="Memoria API",
|
69 |
description="API for storing and retrieving memories.",
|
70 |
-
version="1.0.
|
71 |
-
lifespan=lifespan
|
72 |
)
|
73 |
|
74 |
app.add_middleware(
|
75 |
CORSMiddleware,
|
76 |
-
allow_origins=["*"],
|
77 |
allow_credentials=True,
|
78 |
allow_methods=["*"],
|
79 |
allow_headers=["*"],
|
@@ -89,10 +93,7 @@ def save_memory(memory: Memory):
|
|
89 |
try:
|
90 |
embedding = model.encode(memory.content).tolist()
|
91 |
memory_id = str(uuid.uuid4())
|
92 |
-
|
93 |
-
# Upsert (update or insert) the vector into Pinecone
|
94 |
index.upsert(vectors=[{"id": memory_id, "values": embedding, "metadata": {"text": memory.content}}])
|
95 |
-
|
96 |
print(f"Successfully saved memory with ID: {memory_id}")
|
97 |
return {"status": "success", "id": memory_id}
|
98 |
except Exception as e:
|
@@ -103,13 +104,8 @@ def save_memory(memory: Memory):
|
|
103 |
def search_memory(search: SearchQuery):
|
104 |
try:
|
105 |
query_embedding = model.encode(search.query).tolist()
|
106 |
-
|
107 |
-
# Query Pinecone for the most similar vectors
|
108 |
results = index.query(vector=query_embedding, top_k=5, include_metadata=True)
|
109 |
-
|
110 |
-
# Extract the original text from the metadata
|
111 |
retrieved_documents = [match['metadata']['text'] for match in results['matches']]
|
112 |
-
|
113 |
print(f"Found {len(retrieved_documents)} results for query: '{search.query}'")
|
114 |
return {"status": "success", "results": retrieved_documents}
|
115 |
except Exception as e:
|
@@ -117,7 +113,4 @@ def search_memory(search: SearchQuery):
|
|
117 |
raise HTTPException(status_code=500, detail=str(e))
|
118 |
|
119 |
if __name__ == "__main__":
|
120 |
-
uvicorn.run("main:app", host="127.0.0.1", port=8000, reload=True)
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
1 |
import uvicorn
|
2 |
+
from fastapi import FastAPI, HTTPException
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
4 |
from pydantic import BaseModel
|
5 |
from sentence_transformers import SentenceTransformer
|
|
|
9 |
from contextlib import asynccontextmanager
|
10 |
|
11 |
# --- Environment Setup ---
|
|
|
|
|
12 |
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
|
13 |
PINECONE_INDEX_NAME = os.getenv("PINECONE_INDEX_NAME", "memoria-index")
|
14 |
+
# Define a writable cache directory inside our container
|
15 |
+
CACHE_DIR = "/app/model_cache"
|
16 |
|
17 |
# --- Global objects ---
|
|
|
18 |
model = None
|
19 |
pc = None
|
20 |
index = None
|
|
|
32 |
raise ValueError("PINECONE_API_KEY environment variable not set.")
|
33 |
|
34 |
# 1. Load the AI Model
|
35 |
+
print(f"Loading model and setting cache to: {CACHE_DIR}")
|
36 |
+
# THE FINAL FIX: Explicitly tell the library where to save the model.
|
37 |
+
model = SentenceTransformer(
|
38 |
+
'sentence-transformers/paraphrase-albert-small-v2',
|
39 |
+
cache_folder=CACHE_DIR
|
40 |
+
)
|
41 |
print("Model loaded.")
|
42 |
|
43 |
# 2. Connect to Pinecone
|
|
|
50 |
pc.create_index(
|
51 |
name=PINECONE_INDEX_NAME,
|
52 |
dimension=model.get_sentence_embedding_dimension(),
|
53 |
+
metric="cosine",
|
54 |
spec=ServerlessSpec(cloud="aws", region="us-east-1")
|
55 |
)
|
56 |
index = pc.Index(PINECONE_INDEX_NAME)
|
57 |
print("Pinecone setup complete.")
|
58 |
yield
|
|
|
59 |
print("Application shutdown.")
|
60 |
|
61 |
+
# ... (The rest of the file remains exactly the same) ...
|
62 |
+
|
63 |
# --- Pydantic Models ---
|
64 |
class Memory(BaseModel):
|
65 |
content: str
|
|
|
71 |
app = FastAPI(
|
72 |
title="Memoria API",
|
73 |
description="API for storing and retrieving memories.",
|
74 |
+
version="1.0.1", # Final deployed version
|
75 |
+
lifespan=lifespan
|
76 |
)
|
77 |
|
78 |
app.add_middleware(
|
79 |
CORSMiddleware,
|
80 |
+
allow_origins=["*"],
|
81 |
allow_credentials=True,
|
82 |
allow_methods=["*"],
|
83 |
allow_headers=["*"],
|
|
|
93 |
try:
|
94 |
embedding = model.encode(memory.content).tolist()
|
95 |
memory_id = str(uuid.uuid4())
|
|
|
|
|
96 |
index.upsert(vectors=[{"id": memory_id, "values": embedding, "metadata": {"text": memory.content}}])
|
|
|
97 |
print(f"Successfully saved memory with ID: {memory_id}")
|
98 |
return {"status": "success", "id": memory_id}
|
99 |
except Exception as e:
|
|
|
104 |
def search_memory(search: SearchQuery):
|
105 |
try:
|
106 |
query_embedding = model.encode(search.query).tolist()
|
|
|
|
|
107 |
results = index.query(vector=query_embedding, top_k=5, include_metadata=True)
|
|
|
|
|
108 |
retrieved_documents = [match['metadata']['text'] for match in results['matches']]
|
|
|
109 |
print(f"Found {len(retrieved_documents)} results for query: '{search.query}'")
|
110 |
return {"status": "success", "results": retrieved_documents}
|
111 |
except Exception as e:
|
|
|
113 |
raise HTTPException(status_code=500, detail=str(e))
|
114 |
|
115 |
if __name__ == "__main__":
|
116 |
+
uvicorn.run("main:app", host="127.0.0.1", port=8000, reload=True)
|
|
|
|
|
|