Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import uvicorn
|
2 |
+
from fastapi import FastAPI, HTTPException, Depends
|
3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
4 |
+
from pydantic import BaseModel
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from pinecone import Pinecone, ServerlessSpec
|
7 |
+
import uuid
|
8 |
+
import os
|
9 |
+
from contextlib import asynccontextmanager
|
10 |
+
|
11 |
+
# --- Environment Setup ---
|
12 |
+
# It's best practice to get sensitive keys from environment variables
|
13 |
+
# We will set these up in Hugging Face Spaces Secrets
|
14 |
+
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
|
15 |
+
PINECONE_INDEX_NAME = os.getenv("PINECONE_INDEX_NAME", "memoria-index")
|
16 |
+
|
17 |
+
# --- Global objects ---
|
18 |
+
# We load these once at startup to save time and memory
|
19 |
+
model = None
|
20 |
+
pc = None
|
21 |
+
index = None
|
22 |
+
|
23 |
+
@asynccontextmanager
|
24 |
+
async def lifespan(app: FastAPI):
|
25 |
+
"""
|
26 |
+
Handles startup and shutdown events for the FastAPI app.
|
27 |
+
Loads the model and connects to Pinecone on startup.
|
28 |
+
"""
|
29 |
+
global model, pc, index
|
30 |
+
print("Application startup...")
|
31 |
+
|
32 |
+
if not PINECONE_API_KEY:
|
33 |
+
raise ValueError("PINECONE_API_KEY environment variable not set.")
|
34 |
+
|
35 |
+
# 1. Load the AI Model
|
36 |
+
print("Loading lightweight sentence transformer model...")
|
37 |
+
model = SentenceTransformer('sentence-transformers/paraphrase-albert-small-v2')
|
38 |
+
print("Model loaded.")
|
39 |
+
|
40 |
+
# 2. Connect to Pinecone
|
41 |
+
print("Connecting to Pinecone...")
|
42 |
+
pc = Pinecone(api_key=PINECONE_API_KEY)
|
43 |
+
|
44 |
+
# 3. Get or create the Pinecone index
|
45 |
+
if PINECONE_INDEX_NAME not in pc.list_indexes().names():
|
46 |
+
print(f"Creating new Pinecone index: {PINECONE_INDEX_NAME}")
|
47 |
+
pc.create_index(
|
48 |
+
name=PINECONE_INDEX_NAME,
|
49 |
+
dimension=model.get_sentence_embedding_dimension(),
|
50 |
+
metric="cosine", # Cosine similarity is great for sentence vectors
|
51 |
+
spec=ServerlessSpec(cloud="aws", region="us-east-1")
|
52 |
+
)
|
53 |
+
index = pc.Index(PINECONE_INDEX_NAME)
|
54 |
+
print("Pinecone setup complete.")
|
55 |
+
yield
|
56 |
+
# Cleanup logic can go here if needed on shutdown
|
57 |
+
print("Application shutdown.")
|
58 |
+
|
59 |
+
# --- Pydantic Models ---
|
60 |
+
class Memory(BaseModel):
|
61 |
+
content: str
|
62 |
+
|
63 |
+
class SearchQuery(BaseModel):
|
64 |
+
query: str
|
65 |
+
|
66 |
+
# --- FastAPI App ---
|
67 |
+
app = FastAPI(
|
68 |
+
title="Memoria API",
|
69 |
+
description="API for storing and retrieving memories.",
|
70 |
+
version="1.0.0",
|
71 |
+
lifespan=lifespan # Use the lifespan context manager
|
72 |
+
)
|
73 |
+
|
74 |
+
app.add_middleware(
|
75 |
+
CORSMiddleware,
|
76 |
+
allow_origins=["*"], # Allow all origins for simplicity
|
77 |
+
allow_credentials=True,
|
78 |
+
allow_methods=["*"],
|
79 |
+
allow_headers=["*"],
|
80 |
+
)
|
81 |
+
|
82 |
+
# --- API Endpoints ---
|
83 |
+
@app.get("/")
|
84 |
+
def read_root():
|
85 |
+
return {"status": "ok", "message": "Welcome to the Memoria API!"}
|
86 |
+
|
87 |
+
@app.post("/save_memory")
|
88 |
+
def save_memory(memory: Memory):
|
89 |
+
try:
|
90 |
+
embedding = model.encode(memory.content).tolist()
|
91 |
+
memory_id = str(uuid.uuid4())
|
92 |
+
|
93 |
+
# Upsert (update or insert) the vector into Pinecone
|
94 |
+
index.upsert(vectors=[{"id": memory_id, "values": embedding, "metadata": {"text": memory.content}}])
|
95 |
+
|
96 |
+
print(f"Successfully saved memory with ID: {memory_id}")
|
97 |
+
return {"status": "success", "id": memory_id}
|
98 |
+
except Exception as e:
|
99 |
+
print(f"An error occurred during save: {e}")
|
100 |
+
raise HTTPException(status_code=500, detail=str(e))
|
101 |
+
|
102 |
+
@app.post("/search_memory")
|
103 |
+
def search_memory(search: SearchQuery):
|
104 |
+
try:
|
105 |
+
query_embedding = model.encode(search.query).tolist()
|
106 |
+
|
107 |
+
# Query Pinecone for the most similar vectors
|
108 |
+
results = index.query(vector=query_embedding, top_k=5, include_metadata=True)
|
109 |
+
|
110 |
+
# Extract the original text from the metadata
|
111 |
+
retrieved_documents = [match['metadata']['text'] for match in results['matches']]
|
112 |
+
|
113 |
+
print(f"Found {len(retrieved_documents)} results for query: '{search.query}'")
|
114 |
+
return {"status": "success", "results": retrieved_documents}
|
115 |
+
except Exception as e:
|
116 |
+
print(f"An error occurred during search: {e}")
|
117 |
+
raise HTTPException(status_code=500, detail=str(e))
|
118 |
+
|
119 |
+
if __name__ == "__main__":
|
120 |
+
uvicorn.run("main:app", host="127.0.0.1", port=8000, reload=True)
|
121 |
+
|
122 |
+
|
123 |
+
|