from flask import Flask, render_template, request from PIL import Image import os import torch import cv2 import mediapipe as mp from transformers import SamModel, SamProcessor from diffusers.utils import load_image from torchvision import transforms import tempfile app = Flask(__name__) # Use temporary directories for uploads and outputs UPLOAD_FOLDER = '/tmp/uploads' OUTPUT_FOLDER = '/tmp/outputs' # Ensure folders exist try: os.makedirs(UPLOAD_FOLDER, exist_ok=True) os.makedirs(OUTPUT_FOLDER, exist_ok=True) # Also create static directories for serving files os.makedirs('static/uploads', exist_ok=True) os.makedirs('static/outputs', exist_ok=True) except PermissionError as e: print(f"Permission denied for creating directories: {e}") # Load model once at startup try: model = SamModel.from_pretrained("Zigeng/SlimSAM-uniform-50") processor = SamProcessor.from_pretrained("Zigeng/SlimSAM-uniform-50") print("Models loaded successfully") except Exception as e: print(f"Error loading models: {e}") # Pose function def get_shoulder_coordinates(image_path): try: mp_pose = mp.solutions.pose pose = mp_pose.Pose( static_image_mode=True, model_complexity=2, enable_segmentation=False, min_detection_confidence=0.5 ) image = cv2.imread(image_path) if image is None: print(f"Could not load image from {image_path}") return None image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) results = pose.process(image_rgb) if results.pose_landmarks: height, width, _ = image.shape landmarks = results.pose_landmarks.landmark left_shoulder = ( int(landmarks[11].x * width), int(landmarks[11].y * height) ) right_shoulder = ( int(landmarks[12].x * width), int(landmarks[12].y * height) ) print(f"Left shoulder: {left_shoulder}") print(f"Right shoulder: {right_shoulder}") return left_shoulder, right_shoulder else: print("No pose landmarks detected") return None except Exception as e: print(f"Error in pose detection: {e}") return None @app.route('/', methods=['GET', 'POST']) def index(): if request.method == 'POST': try: person_file = request.files.get('person_image') tshirt_file = request.files.get('tshirt_image') if not person_file or not tshirt_file: return "Please upload both person and t-shirt images." # Save files to temporary directory person_path = os.path.join(UPLOAD_FOLDER, 'person.jpg') tshirt_path = os.path.join(UPLOAD_FOLDER, 'tshirt.png') person_file.save(person_path) tshirt_file.save(tshirt_path) # Run your model coordinates = get_shoulder_coordinates(person_path) if coordinates is None: return "No pose detected. Please try with a different image where the person's shoulders are clearly visible." img = load_image(person_path) new_tshirt = load_image(tshirt_path) left_shoulder, right_shoulder = coordinates input_points = [[[left_shoulder[0], left_shoulder[1]], [right_shoulder[0], right_shoulder[1]]]] inputs = processor(img, input_points=input_points, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) masks = processor.image_processor.post_process_masks( outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu() ) mask_tensor = masks[0][0][2].to(dtype=torch.uint8) mask = transforms.ToPILImage()(mask_tensor * 255) new_tshirt = new_tshirt.resize(img.size, Image.LANCZOS) img_with_new_tshirt = Image.composite(new_tshirt, img, mask) # Save result to both temp and static directories result_path_temp = os.path.join(OUTPUT_FOLDER, 'result.jpg') result_path_static = os.path.join('static/outputs', 'result.jpg') img_with_new_tshirt.save(result_path_temp) img_with_new_tshirt.save(result_path_static) return render_template('index.html', result_img='outputs/result.jpg') except Exception as e: print(f"Error processing request: {e}") return f"Error processing images: {str(e)}" return render_template('index.html') if __name__ == '__main__': app.run(debug=True, host='0.0.0.0', port=6000)