# PyTorch 2.8 (temporary hack) import os os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces') # Actual demo code import spaces import torch from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline from diffusers.models.transformers.transformer_wan import WanTransformer3DModel from diffusers import AutoencoderKLWan, WanPipeline, WanImageToVideoPipeline, UniPCMultistepScheduler from diffusers.utils.export_utils import export_to_video import gradio as gr import tempfile import numpy as np from PIL import Image import random from optimization import optimize_pipeline_ MODEL_ID = "linoyts/Wan2.2-T2V-A14B-Diffusers-BF16" LANDSCAPE_WIDTH = 832 LANDSCAPE_HEIGHT = 480 MAX_SEED = np.iinfo(np.int32).max FIXED_FPS = 24 MIN_FRAMES_MODEL = 8 MAX_FRAMES_MODEL = 81 # pipe = WanPipeline.from_pretrained(MODEL_ID, # transformer=WanTransformer3DModel.from_pretrained('linoyts/Wan2.2-T2V-A14B-Diffusers-BF16', # subfolder='transformer', # torch_dtype=torch.bfloat16, # device_map='cuda', # ), # transformer_2=WanTransformer3DModel.from_pretrained('linoyts/Wan2.2-T2V-A14B-Diffusers-BF16', # subfolder='transformer_2', # torch_dtype=torch.bfloat16, # device_map='cuda', # ), # torch_dtype=torch.bfloat16, # ).to('cuda') vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32) pipe = WanPipeline.from_pretrained( MODEL_ID, vae=vae, torch_dtype=torch.bfloat16 ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0) pipe.to("cuda") optimize_pipeline_(pipe, prompt='prompt', height=LANDSCAPE_HEIGHT, width=LANDSCAPE_WIDTH, num_frames=MAX_FRAMES_MODEL, ) default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation" default_negative_prompt = "色调艳丽, 过曝, 静态, 细节模糊不清, 字幕, 风格, 作品, 画作, 画面, 静止, 整体发灰, 最差质量, 低质量, JPEG压缩残留, 丑陋的, 残缺的, 多余的手指, 画得不好的手部, 画得不好的脸部, 畸形的, 毁容的, 形态畸形的肢体, 手指融合, 静止不动的画面, 杂乱的背景, 三条腿, 背景人很多, 倒着走" def get_duration( prompt, negative_prompt, num_frames, guidance_scale, steps, seed, randomize_seed, progress, ): return steps * 15 @spaces.GPU(duration=get_duration) def generate_video( prompt, negative_prompt=default_negative_prompt, num_frames = MAX_FRAMES_MODEL, guidance_scale = 3.5, steps = 28, seed = 42, randomize_seed = False, progress=gr.Progress(track_tqdm=True), ): target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE) target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE) num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL) current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed) output_frames_list = pipe( prompt=prompt, negative_prompt=negative_prompt, height=target_h, width=target_w, num_frames=num_frames, guidance_scale=float(guidance_scale), num_inference_steps=int(steps), generator=torch.Generator(device="cuda").manual_seed(current_seed) ).frames[0] with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile: video_path = tmpfile.name export_to_video(output_frames_list, video_path, fps=FIXED_FPS) return video_path, current_seed with gr.Blocks() as demo: gr.Markdown("# Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA") gr.Markdown("[CausVid](https://github.com/tianweiy/CausVid) is a distilled version of Wan 2.1 to run faster in just 4-8 steps, [extracted as LoRA by Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_14B_T2V_lora_rank32.safetensors) and is compatible with 🧨 diffusers") with gr.Row(): with gr.Column(): prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v) num_frames_input = gr.Slider(minimum=MIN_FRAMES_MODEL, maximum=MAX_FRAMES_MODEL, step=1, value=MAX_FRAMES_MODEL, label="Frames") with gr.Accordion("Advanced Settings", open=False): negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3) seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True) randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True) steps_slider = gr.Slider(minimum=1, maximum=40, step=1, value=28, label="Inference Steps") guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale") generate_button = gr.Button("Generate Video", variant="primary") with gr.Column(): video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False) ui_inputs = [ prompt_input, negative_prompt_input, num_frames_input, guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox ] generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input]) gr.Examples( examples=[ [ "wan_i2v_input.JPG", "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.", ], ], inputs=[ prompt_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy" ) if __name__ == "__main__": demo.queue().launch(mcp_server=True)