""" """ from typing import Any from typing import Callable from typing import ParamSpec import spaces import torch from torch.utils._pytree import tree_map_only from torchao.quantization import quantize_ from torchao.quantization import Float8DynamicActivationFloat8WeightConfig from torchao.quantization import Int8WeightOnlyConfig from optimization_utils import capture_component_call from optimization_utils import aoti_compile from optimization_utils import ZeroGPUCompiledModel from optimization_utils import drain_module_parameters P = ParamSpec('P') TRANSFORMER_NUM_FRAMES_DIM = torch.export.Dim('num_frames', min=3, max=21) TRANSFORMER_DYNAMIC_SHAPES = { 'hidden_states': { 2: TRANSFORMER_NUM_FRAMES_DIM, }, } INDUCTOR_CONFIGS = { 'conv_1x1_as_mm': True, 'epilogue_fusion': False, 'coordinate_descent_tuning': True, 'coordinate_descent_check_all_directions': True, 'max_autotune': True, 'triton.cudagraphs': True, } def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): @spaces.GPU(duration=1500) def compile_transformer(): pipeline.load_lora_weights( "Kijai/WanVideo_comfy", weight_name="Lightx2v/lightx2v_T2V_14B_cfg_step_distill_v2_lora_rank128_bf16.safetensors", adapter_name="lightning" ) kwargs_lora = {} kwargs_lora["load_into_transformer_2"] = True pipeline.load_lora_weights( "Kijai/WanVideo_comfy", weight_name="Lightx2v/lightx2v_T2V_14B_cfg_step_distill_v2_lora_rank128_bf16.safetensors", #weight_name="Wan22-Lightning/Wan2.2-Lightning_T2V-A14B-4steps-lora_LOW_fp16.safetensors", adapter_name="lightning_2", **kwargs_lora ) pipeline.set_adapters(["lightning", "lightning_2"], adapter_weights=[1., 1.]) pipeline.fuse_lora(adapter_names=["lightning"], lora_scale=3., components=["transformer"]) pipeline.fuse_lora(adapter_names=["lightning_2"], lora_scale=1., components=["transformer_2"]) pipeline.unload_lora_weights() with capture_component_call(pipeline, 'transformer') as call: pipeline(*args, **kwargs) dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs) dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig()) quantize_(pipeline.transformer_2, Float8DynamicActivationFloat8WeightConfig()) hidden_states: torch.Tensor = call.kwargs['hidden_states'] hidden_states_transposed = hidden_states.transpose(-1, -2).contiguous() if hidden_states.shape[-1] > hidden_states.shape[-2]: hidden_states_landscape = hidden_states hidden_states_portrait = hidden_states_transposed else: hidden_states_landscape = hidden_states_transposed hidden_states_portrait = hidden_states exported_landscape_1 = torch.export.export( mod=pipeline.transformer, args=call.args, kwargs=call.kwargs | {'hidden_states': hidden_states_landscape}, dynamic_shapes=dynamic_shapes, ) exported_portrait_2 = torch.export.export( mod=pipeline.transformer_2, args=call.args, kwargs=call.kwargs | {'hidden_states': hidden_states_portrait}, dynamic_shapes=dynamic_shapes, ) compiled_landscape_1 = aoti_compile(exported_landscape_1, INDUCTOR_CONFIGS) compiled_portrait_2 = aoti_compile(exported_portrait_2, INDUCTOR_CONFIGS) compiled_landscape_2 = ZeroGPUCompiledModel(compiled_landscape_1.archive_file, compiled_portrait_2.weights) compiled_portrait_1 = ZeroGPUCompiledModel(compiled_portrait_2.archive_file, compiled_landscape_1.weights) return ( compiled_landscape_1, compiled_landscape_2, compiled_portrait_1, compiled_portrait_2, ) quantize_(pipeline.text_encoder, Int8WeightOnlyConfig()) cl1, cl2, cp1, cp2 = compile_transformer() def combined_transformer_1(*args, **kwargs): hidden_states: torch.Tensor = kwargs['hidden_states'] if hidden_states.shape[-1] > hidden_states.shape[-2]: return cl1(*args, **kwargs) else: return cp1(*args, **kwargs) def combined_transformer_2(*args, **kwargs): hidden_states: torch.Tensor = kwargs['hidden_states'] if hidden_states.shape[-1] > hidden_states.shape[-2]: return cl2(*args, **kwargs) else: return cp2(*args, **kwargs) pipeline.transformer.forward = combined_transformer_1 drain_module_parameters(pipeline.transformer) pipeline.transformer_2.forward = combined_transformer_2 drain_module_parameters(pipeline.transformer_2)